{"title":"从芥菜壳热解油中回收有价化学中间体的模型和实验研究","authors":"Kanchan Drugkar, Anand Gupta Chakinala, Abhishek Sharma","doi":"10.1515/ijcre-2022-0236","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a study on the separation of model compounds representative of mustard husk pyrolysis oil, through a combination of experimental and modelling approaches. Atmospheric and vacuum distillation were used to perform the separation, and the obtained results were validated by means of an Aspen simulation model. To simulate the pyrolysis oil, different fractions present in mustard husk pyrolysis oil were used. Atmospheric distillation was performed at temperatures ranging from 50 to 180 °C, while vacuum distillation was conducted at varying temperatures and pressures. The composition of the distillate and residue was analysed, and it was found that coking occurred due to polymerization reactions, even at moderate temperatures up to ∼100 °C during atmospheric distillation. Therefore, vacuum rotary evaporation was employed to carry out further studies at lower temperatures (50 °C) and pressures (50 mbar), resulting in a recovery percentage of 56 % for lighter fractions and 36 % for heavier fractions, with complete water (62 %) collected in the distillate phase. The simulated feed mixture, which consisted of Guaiacols, furfurals and furan methanols, was distributed equally in both the distillate and residue phases, and the experimental recoveries in distillate and residue phases were found to be similar with simulation values. Further studies are needed to comprehend the separation behaviour of real pyrolysis oil and to minimize polymerization reactions in the column.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"0 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and experimental studies for the recovery of valuable chemical intermediates from mustard husk pyrolysis oil\",\"authors\":\"Kanchan Drugkar, Anand Gupta Chakinala, Abhishek Sharma\",\"doi\":\"10.1515/ijcre-2022-0236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents a study on the separation of model compounds representative of mustard husk pyrolysis oil, through a combination of experimental and modelling approaches. Atmospheric and vacuum distillation were used to perform the separation, and the obtained results were validated by means of an Aspen simulation model. To simulate the pyrolysis oil, different fractions present in mustard husk pyrolysis oil were used. Atmospheric distillation was performed at temperatures ranging from 50 to 180 °C, while vacuum distillation was conducted at varying temperatures and pressures. The composition of the distillate and residue was analysed, and it was found that coking occurred due to polymerization reactions, even at moderate temperatures up to ∼100 °C during atmospheric distillation. Therefore, vacuum rotary evaporation was employed to carry out further studies at lower temperatures (50 °C) and pressures (50 mbar), resulting in a recovery percentage of 56 % for lighter fractions and 36 % for heavier fractions, with complete water (62 %) collected in the distillate phase. The simulated feed mixture, which consisted of Guaiacols, furfurals and furan methanols, was distributed equally in both the distillate and residue phases, and the experimental recoveries in distillate and residue phases were found to be similar with simulation values. Further studies are needed to comprehend the separation behaviour of real pyrolysis oil and to minimize polymerization reactions in the column.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"0 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0236\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Modelling and experimental studies for the recovery of valuable chemical intermediates from mustard husk pyrolysis oil
Abstract This work presents a study on the separation of model compounds representative of mustard husk pyrolysis oil, through a combination of experimental and modelling approaches. Atmospheric and vacuum distillation were used to perform the separation, and the obtained results were validated by means of an Aspen simulation model. To simulate the pyrolysis oil, different fractions present in mustard husk pyrolysis oil were used. Atmospheric distillation was performed at temperatures ranging from 50 to 180 °C, while vacuum distillation was conducted at varying temperatures and pressures. The composition of the distillate and residue was analysed, and it was found that coking occurred due to polymerization reactions, even at moderate temperatures up to ∼100 °C during atmospheric distillation. Therefore, vacuum rotary evaporation was employed to carry out further studies at lower temperatures (50 °C) and pressures (50 mbar), resulting in a recovery percentage of 56 % for lighter fractions and 36 % for heavier fractions, with complete water (62 %) collected in the distillate phase. The simulated feed mixture, which consisted of Guaiacols, furfurals and furan methanols, was distributed equally in both the distillate and residue phases, and the experimental recoveries in distillate and residue phases were found to be similar with simulation values. Further studies are needed to comprehend the separation behaviour of real pyrolysis oil and to minimize polymerization reactions in the column.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.