广义车轮的公制尺寸

Q2 Mathematics
Badekara Sooryanarayana , Shreedhar Kunikullaya , Narahari Narasimha Swamy
{"title":"广义车轮的公制尺寸","authors":"Badekara Sooryanarayana ,&nbsp;Shreedhar Kunikullaya ,&nbsp;Narahari Narasimha Swamy","doi":"10.1016/j.ajmsc.2019.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>In a graph <span><math><mi>G</mi></math></span>, a vertex <span><math><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> resolves a pair of vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> if <span><math><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>. A resolving set of <span><math><mi>G</mi></math></span> is a set of vertices <span><math><mi>S</mi></math></span> such that every pair of distinct vertices in <span><math><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is resolved by some vertex in <span><math><mi>S</mi></math></span>. The minimum cardinality among all the resolving sets of <span><math><mi>G</mi></math></span> is called the metric dimension of <span><math><mi>G</mi></math></span>, denoted by <span><math><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span>. The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established.</p></div>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"25 2","pages":"Pages 131-144"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.04.002","citationCount":"5","resultStr":"{\"title\":\"Metric dimension of generalized wheels\",\"authors\":\"Badekara Sooryanarayana ,&nbsp;Shreedhar Kunikullaya ,&nbsp;Narahari Narasimha Swamy\",\"doi\":\"10.1016/j.ajmsc.2019.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a graph <span><math><mi>G</mi></math></span>, a vertex <span><math><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> resolves a pair of vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> if <span><math><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>. A resolving set of <span><math><mi>G</mi></math></span> is a set of vertices <span><math><mi>S</mi></math></span> such that every pair of distinct vertices in <span><math><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is resolved by some vertex in <span><math><mi>S</mi></math></span>. The minimum cardinality among all the resolving sets of <span><math><mi>G</mi></math></span> is called the metric dimension of <span><math><mi>G</mi></math></span>, denoted by <span><math><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span>. The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established.</p></div>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\"25 2\",\"pages\":\"Pages 131-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.04.002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319516617302323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319516617302323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

在图G中,如果d(u,w)≠d(V,w),则顶点w∈V(G)可以解析一对顶点u, V∈V(G)。G的解析集是顶点S的集合,使得V(G)中的每一对不同的顶点都能被S中的某个顶点解析。G的所有解析集的最小基数称为G的度量维数,用β(G)表示。车轮的公制尺寸已在较早的论文中获得(Shanmukha et al., 2002)。本文给出了广义车轮族的度量维数。进一步讨论了图的电晕积的度量维数的几个性质,建立了图的度量维数与其广义电晕积之间的一些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric dimension of generalized wheels

In a graph G, a vertex wV(G) resolves a pair of vertices u,vV(G) if d(u,w)d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct vertices in V(G) is resolved by some vertex in S. The minimum cardinality among all the resolving sets of G is called the metric dimension of G, denoted by β(G). The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信