根据客户行为模式的变化预测客户流失

IF 0.6 Q4 BUSINESS
Yury Zelenkov, A. Suchkova
{"title":"根据客户行为模式的变化预测客户流失","authors":"Yury Zelenkov, A. Suchkova","doi":"10.17323/2587-814x.2023.1.7.17","DOIUrl":null,"url":null,"abstract":"Customer retention is one of the most important tasks of a business, and it is extremely important to allocate retention resources according to the potential profitability of the customer. Most often the problem of predicting customer churn is solved based on the RFM (Recency, Frequency, Monetary) model. This paper proposes a way to extend the RFM model with estimates of the probability of changes in customer behavior. Based on an analysis of data relating to 33 918 clients of a large Russian retailer for 2019–2020, it is shown that there are recurring patterns of change in their behavior over a single year. Information about these patterns is used to calculate the necessary probability estimates. Incorporating these data into a predictive model based on logistic regression increases prediction accuracy by more than 10% on the metrics AUC and geometric mean. It is also shown that this approach has limitations related to the disruption of behavioral patterns by external shocks, such as the lockdown due to the COVID-19 pandemic in April 2020. The paper also proposes a way to identify these shocks, making it possible to forecast degradation in the predictive ability of the model.","PeriodicalId":41920,"journal":{"name":"Biznes Informatika-Business Informatics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting customer churn based on changes in their behavior patterns\",\"authors\":\"Yury Zelenkov, A. Suchkova\",\"doi\":\"10.17323/2587-814x.2023.1.7.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customer retention is one of the most important tasks of a business, and it is extremely important to allocate retention resources according to the potential profitability of the customer. Most often the problem of predicting customer churn is solved based on the RFM (Recency, Frequency, Monetary) model. This paper proposes a way to extend the RFM model with estimates of the probability of changes in customer behavior. Based on an analysis of data relating to 33 918 clients of a large Russian retailer for 2019–2020, it is shown that there are recurring patterns of change in their behavior over a single year. Information about these patterns is used to calculate the necessary probability estimates. Incorporating these data into a predictive model based on logistic regression increases prediction accuracy by more than 10% on the metrics AUC and geometric mean. It is also shown that this approach has limitations related to the disruption of behavioral patterns by external shocks, such as the lockdown due to the COVID-19 pandemic in April 2020. The paper also proposes a way to identify these shocks, making it possible to forecast degradation in the predictive ability of the model.\",\"PeriodicalId\":41920,\"journal\":{\"name\":\"Biznes Informatika-Business Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biznes Informatika-Business Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17323/2587-814x.2023.1.7.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biznes Informatika-Business Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/2587-814x.2023.1.7.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

客户保留是企业最重要的任务之一,根据客户的潜在盈利能力分配保留资源是极其重要的。大多数情况下,预测客户流失的问题是基于RFM(Recency,Frequency,Monetary)模型来解决的。本文提出了一种通过估计客户行为变化的概率来扩展RFM模型的方法。基于对2019年至2020年俄罗斯一家大型零售商的33918名客户的数据分析,结果表明,他们的行为在一年内反复发生变化。关于这些模式的信息用于计算必要的概率估计。将这些数据合并到基于逻辑回归的预测模型中,可以将AUC和几何平均值的预测精度提高10%以上。研究还表明,这种方法与外部冲击对行为模式的破坏有关,例如2020年4月新冠肺炎大流行导致的封锁。本文还提出了一种识别这些冲击的方法,使预测模型的预测能力下降成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting customer churn based on changes in their behavior patterns
Customer retention is one of the most important tasks of a business, and it is extremely important to allocate retention resources according to the potential profitability of the customer. Most often the problem of predicting customer churn is solved based on the RFM (Recency, Frequency, Monetary) model. This paper proposes a way to extend the RFM model with estimates of the probability of changes in customer behavior. Based on an analysis of data relating to 33 918 clients of a large Russian retailer for 2019–2020, it is shown that there are recurring patterns of change in their behavior over a single year. Information about these patterns is used to calculate the necessary probability estimates. Incorporating these data into a predictive model based on logistic regression increases prediction accuracy by more than 10% on the metrics AUC and geometric mean. It is also shown that this approach has limitations related to the disruption of behavioral patterns by external shocks, such as the lockdown due to the COVID-19 pandemic in April 2020. The paper also proposes a way to identify these shocks, making it possible to forecast degradation in the predictive ability of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信