具有撕裂密度的可压缩Navier-Stokes方程

IF 3.1 1区 数学 Q1 MATHEMATICS
Raphaël Danchin, Piotr BogusŁaw Mucha
{"title":"具有撕裂密度的可压缩Navier-Stokes方程","authors":"Raphaël Danchin,&nbsp;Piotr BogusŁaw Mucha","doi":"10.1002/cpa.22116","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations  supplemented with general <i>H</i><sup>1</sup> initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g., <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>=</mo>\n <msup>\n <mi>ρ</mi>\n <mi>γ</mi>\n </msup>\n </mrow>\n <annotation>$P=\\rho ^\\gamma$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gamma &gt;1$</annotation>\n </semantics></math>), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressible Navier-Stokes equations with ripped density\",\"authors\":\"Raphaël Danchin,&nbsp;Piotr BogusŁaw Mucha\",\"doi\":\"10.1002/cpa.22116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations  supplemented with general <i>H</i><sup>1</sup> initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g., <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>ρ</mi>\\n <mi>γ</mi>\\n </msup>\\n </mrow>\\n <annotation>$P=\\\\rho ^\\\\gamma$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>&gt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\gamma &gt;1$</annotation>\\n </semantics></math>), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22116\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22116","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们关注的是二维可压缩Navier-Stokes方程的Cauchy问题,该方程补充了一般的H1初始速度和有界初始密度,但不一定是严格正的:例如,它可能是任何集合的特征函数。在理想气体的情况下,只要体积(体积)粘度系数足够大,我们就建立了全局实时存在性和唯一性。对于更一般的压力定律(例如,P=ργ$P=\rho^\gamma$,γ>1$\gamma>1$),我们仍然得到全局存在性,但唯一性仍然是一个悬而未决的问题。作为我们结果的副产品,当体积粘度趋于无穷大时,我们对非均匀不可压缩Navier-Stokes方程的收敛性给出了严格的证明。在三维情况下,在不受粘度限制的短时间内,以及在初始速度场足够小的大时间内,都证明了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressible Navier-Stokes equations with ripped density

We are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations  supplemented with general H1 initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g., P = ρ γ $P=\rho ^\gamma$ with γ > 1 $\gamma >1$ ), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信