超越传统生物质增值:生物医学应用的热解衍生产品

IF 14.4 Q1 ENERGY & FUELS
Mohd Amir Asyraf Mohd Hamzah, R. Hasham, Nik Ahmad Nizam Nik Malek, Z. Hashim, Maizatulakmal Yahayu, F. I. Abdul Razak, Z. Zakaria
{"title":"超越传统生物质增值:生物医学应用的热解衍生产品","authors":"Mohd Amir Asyraf Mohd Hamzah, R. Hasham, Nik Ahmad Nizam Nik Malek, Z. Hashim, Maizatulakmal Yahayu, F. I. Abdul Razak, Z. Zakaria","doi":"10.18331/brj2022.9.3.2","DOIUrl":null,"url":null,"abstract":"Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomedical applications, notably for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, concentrated AC extract (CACE) obtained from microwave-assisted pyrolysis of palm kernel shells was fractionated, and the resulting fractions were pooled according to similar thin layer chromatography profiles into combined fractions (CFACs). CFACs were evaluated for total phenolic content, antioxidant level, cytotoxicity, and wound healing activities toward human skin fibroblast cells (HSF 1184). CFAC-3 showed the highest total phenolic content (624.98 ± 8.70 µg GAE/mg of sample) and antioxidant activities (DPPH IC50 of 29.47 ± 0.74 µg/mL, ABTS of 1247.13 ± 27.89 μg TE/mg sample, FRAP of 24.26 ± 0.71 mmol Fe(II)/mg sample, HFRS of 257.74 ± 1.74 µg/mL) compared to CACE (DPPH IC50 of 81.76 ± 2.81 µg/mL, ABTS of 816.95 ± 30.49 μg TE/mg sample, FRAP of 9.22 ± 0.66 mmol Fe(II)/mg sample, HFRS of 689.30 ± 36.00 µg/mL), no cytotoxic properties at ≤50 µg/mL, and significantly faster wound closure (at 1.25 µg/mL) compared to the control 12 h after treatment. The phosphorylation of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) were upregulated, thus indicating that wound healing of CFAC-3 followed through this signalling pathway. To conclude, phenolic-rich CFAC-3 obtained from the pyrolysis of palm kernel shells demonstrated potential biomedical application as an alternative wound healing agent with high antioxidant and wound-healing activity. To the best of our knowledge, this was the first study to report on the wound healing activity of AC and its wound healing mechanism.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Beyond conventional biomass valorisation: pyrolysis-derived products for biomedical applications\",\"authors\":\"Mohd Amir Asyraf Mohd Hamzah, R. Hasham, Nik Ahmad Nizam Nik Malek, Z. Hashim, Maizatulakmal Yahayu, F. I. Abdul Razak, Z. Zakaria\",\"doi\":\"10.18331/brj2022.9.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomedical applications, notably for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, concentrated AC extract (CACE) obtained from microwave-assisted pyrolysis of palm kernel shells was fractionated, and the resulting fractions were pooled according to similar thin layer chromatography profiles into combined fractions (CFACs). CFACs were evaluated for total phenolic content, antioxidant level, cytotoxicity, and wound healing activities toward human skin fibroblast cells (HSF 1184). CFAC-3 showed the highest total phenolic content (624.98 ± 8.70 µg GAE/mg of sample) and antioxidant activities (DPPH IC50 of 29.47 ± 0.74 µg/mL, ABTS of 1247.13 ± 27.89 μg TE/mg sample, FRAP of 24.26 ± 0.71 mmol Fe(II)/mg sample, HFRS of 257.74 ± 1.74 µg/mL) compared to CACE (DPPH IC50 of 81.76 ± 2.81 µg/mL, ABTS of 816.95 ± 30.49 μg TE/mg sample, FRAP of 9.22 ± 0.66 mmol Fe(II)/mg sample, HFRS of 689.30 ± 36.00 µg/mL), no cytotoxic properties at ≤50 µg/mL, and significantly faster wound closure (at 1.25 µg/mL) compared to the control 12 h after treatment. The phosphorylation of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) were upregulated, thus indicating that wound healing of CFAC-3 followed through this signalling pathway. To conclude, phenolic-rich CFAC-3 obtained from the pyrolysis of palm kernel shells demonstrated potential biomedical application as an alternative wound healing agent with high antioxidant and wound-healing activity. To the best of our knowledge, this was the first study to report on the wound healing activity of AC and its wound healing mechanism.\",\"PeriodicalId\":46938,\"journal\":{\"name\":\"Biofuel Research Journal-BRJ\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuel Research Journal-BRJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18331/brj2022.9.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2022.9.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 14

摘要

生物质价值增值通常与绿色生物燃料的生产有关。然而,这可能会超越生物质应用的传统观念,扩展到医学等其他领域。从热解过程中获得的酸凝聚物(AC)具有良好的生物医学应用潜力,特别是其抗菌、抗氧化和抗炎特性。本研究对微波辅助热解棕榈仁壳得到的浓缩AC提取物(CACE)进行了分馏,并根据类似的薄层色谱图谱将所得馏分合并为联合馏分(CFACs)。评估CFACs的总酚含量、抗氧化水平、细胞毒性和对人皮肤成纤维细胞的伤口愈合活性(HSF 1184)。CFAC-3显示,总酚含量最高(624.98±8.70µg GAE /毫克样品)和抗氧化活动(DPPH IC50 29.47±0.74µg / mL, abt 1247.13±27.89μg TE /毫克样品,收紧24.26±0.71更易与铁(II) /毫克样品,hfr 257.74±1.74µg / mL)相比CACE (DPPH IC50 81.76±2.81µg / mL, abt 816.95±30.49μg TE /毫克样品,收紧9.22±0.66更易与铁(II) /毫克样品,hfr 689.30±36.00µg / mL),没有细胞毒性特性≤50µg / mL,治疗后12小时伤口愈合速度明显快于对照组(1.25µg/mL)。磷脂酰肌醇3-激酶(PI3K)和蛋白激酶B (AKT)的磷酸化水平上调,表明cfa3的创面愈合遵循这一信号通路。综上所述,从棕榈仁壳热解中获得的富含酚的CFAC-3作为一种具有高抗氧化和伤口愈合活性的替代伤口愈合剂具有潜在的生物医学应用前景。据我们所知,这是第一个报道AC伤口愈合活性及其伤口愈合机制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond conventional biomass valorisation: pyrolysis-derived products for biomedical applications
Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomedical applications, notably for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, concentrated AC extract (CACE) obtained from microwave-assisted pyrolysis of palm kernel shells was fractionated, and the resulting fractions were pooled according to similar thin layer chromatography profiles into combined fractions (CFACs). CFACs were evaluated for total phenolic content, antioxidant level, cytotoxicity, and wound healing activities toward human skin fibroblast cells (HSF 1184). CFAC-3 showed the highest total phenolic content (624.98 ± 8.70 µg GAE/mg of sample) and antioxidant activities (DPPH IC50 of 29.47 ± 0.74 µg/mL, ABTS of 1247.13 ± 27.89 μg TE/mg sample, FRAP of 24.26 ± 0.71 mmol Fe(II)/mg sample, HFRS of 257.74 ± 1.74 µg/mL) compared to CACE (DPPH IC50 of 81.76 ± 2.81 µg/mL, ABTS of 816.95 ± 30.49 μg TE/mg sample, FRAP of 9.22 ± 0.66 mmol Fe(II)/mg sample, HFRS of 689.30 ± 36.00 µg/mL), no cytotoxic properties at ≤50 µg/mL, and significantly faster wound closure (at 1.25 µg/mL) compared to the control 12 h after treatment. The phosphorylation of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) were upregulated, thus indicating that wound healing of CFAC-3 followed through this signalling pathway. To conclude, phenolic-rich CFAC-3 obtained from the pyrolysis of palm kernel shells demonstrated potential biomedical application as an alternative wound healing agent with high antioxidant and wound-healing activity. To the best of our knowledge, this was the first study to report on the wound healing activity of AC and its wound healing mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信