玄武岩纤维金属基复合材料Al-7075离合器表面摩擦磨损性能试验研究

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J. Rose, G. Vairamani
{"title":"玄武岩纤维金属基复合材料Al-7075离合器表面摩擦磨损性能试验研究","authors":"J. Rose, G. Vairamani","doi":"10.1142/S1756973718500063","DOIUrl":null,"url":null,"abstract":"This paper investigates the friction and wear behavior of Al-7075 and Basalt fiber metal matrix composite for clutch facing applications by replacing the existing asbestos with Basalt fiber combination. Experiments are done to evaluate the friction and wear properties of Al-7075 and Basalt fiber metal matrix composite material under different sliding velocities and contact loads. The reinforcement percentage of Basalt fiber is varied from 0% to 10% in steps of 2.5% on the weight basis. At present, the clutch facing for the Multi Utility Vehicles (MUV) is made of asbestos as a primary content and its hazardous characteristics are taken into consideration. Initially, the clutch facing specifications of a MUV are observed through field studies and then, design calculations are performed to prepare the structural analysis using ANSYS workbench. The stress–strain characteristics of Al-7075 and Basalt fiber mixture are studied through the computational analysis before the fabrication process. Then, the specimen is fabricated by stir casting technique for the experimental investigation of friction and wear properties using pin-on-disk apparatus. The outcome of the analysis has revealed the use of Al-7075 and Basalt fiber metal matrix composite material as a replacement for the existing clutch facing applications and the results are presented with validations.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718500063","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation of Friction and Wear Properties of a Clutch Facing Made of Al-7075 with Basalt Fiber Metal Matrix Composite\",\"authors\":\"J. Rose, G. Vairamani\",\"doi\":\"10.1142/S1756973718500063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the friction and wear behavior of Al-7075 and Basalt fiber metal matrix composite for clutch facing applications by replacing the existing asbestos with Basalt fiber combination. Experiments are done to evaluate the friction and wear properties of Al-7075 and Basalt fiber metal matrix composite material under different sliding velocities and contact loads. The reinforcement percentage of Basalt fiber is varied from 0% to 10% in steps of 2.5% on the weight basis. At present, the clutch facing for the Multi Utility Vehicles (MUV) is made of asbestos as a primary content and its hazardous characteristics are taken into consideration. Initially, the clutch facing specifications of a MUV are observed through field studies and then, design calculations are performed to prepare the structural analysis using ANSYS workbench. The stress–strain characteristics of Al-7075 and Basalt fiber mixture are studied through the computational analysis before the fabrication process. Then, the specimen is fabricated by stir casting technique for the experimental investigation of friction and wear properties using pin-on-disk apparatus. The outcome of the analysis has revealed the use of Al-7075 and Basalt fiber metal matrix composite material as a replacement for the existing clutch facing applications and the results are presented with validations.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973718500063\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973718500063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973718500063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本文通过用玄武岩纤维组合代替现有的石棉,研究了用于离合器面层应用的Al-7075和玄武岩纤维-金属基复合材料的摩擦磨损行为。对Al-7075和玄武岩纤维-金属基复合材料在不同滑动速度和接触载荷下的摩擦磨损性能进行了试验研究。玄武岩纤维的增强百分比在0%至10%之间变化,以重量为基础,以2.5%为步长。目前,多用途车(MUV)的离合器表面是以石棉为主要成分,并考虑到其危险特性。首先,通过现场研究观察了MUV的离合器端面规格,然后使用ANSYS工作台进行设计计算,以准备结构分析。通过计算分析,研究了Al-7075和玄武岩纤维混合物在制备前的应力-应变特性。然后,采用搅拌铸造技术制备了试样,并使用销盘式装置对其摩擦磨损性能进行了实验研究。分析结果表明,使用Al-7075和玄武岩纤维金属基复合材料替代现有的离合器面层应用,并对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Friction and Wear Properties of a Clutch Facing Made of Al-7075 with Basalt Fiber Metal Matrix Composite
This paper investigates the friction and wear behavior of Al-7075 and Basalt fiber metal matrix composite for clutch facing applications by replacing the existing asbestos with Basalt fiber combination. Experiments are done to evaluate the friction and wear properties of Al-7075 and Basalt fiber metal matrix composite material under different sliding velocities and contact loads. The reinforcement percentage of Basalt fiber is varied from 0% to 10% in steps of 2.5% on the weight basis. At present, the clutch facing for the Multi Utility Vehicles (MUV) is made of asbestos as a primary content and its hazardous characteristics are taken into consideration. Initially, the clutch facing specifications of a MUV are observed through field studies and then, design calculations are performed to prepare the structural analysis using ANSYS workbench. The stress–strain characteristics of Al-7075 and Basalt fiber mixture are studied through the computational analysis before the fabrication process. Then, the specimen is fabricated by stir casting technique for the experimental investigation of friction and wear properties using pin-on-disk apparatus. The outcome of the analysis has revealed the use of Al-7075 and Basalt fiber metal matrix composite material as a replacement for the existing clutch facing applications and the results are presented with validations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信