{"title":"微晶木炭增强聚酯复合材料的xrd、FTIR和SEM-EDS分析研究","authors":"Francis Edoziuno, R. Akaluzia","doi":"10.35378/gujs.794837","DOIUrl":null,"url":null,"abstract":"Polyester based particle reinforced composites were developed using varying weight fractions (ranging from 0 to 30 wt%, at 5 wt% interval) of microcrystalline wood charcoal powder (75µm). Quantitative, qualitative and functional characterization of developed wood charcoal (WC) particles reinforced polyester matrix composites was carried out successfully using energy dispersive x-ray spectrophotometer (EDXRF), Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) enhanced with ancillary EDS for elemental identification capability. The primary elements and oxides identified in wood charcoal by EDXRF include iron, copper, zinc, calcium and CaO, Fe2O3, CuO, ZnO respectively. These elements and oxides were noted to induce improvement on the properties of reinforced polymer composites. EDS elemental mapping also confirmed the major elements identified by EDXRF analysis. Composites reinforced with microcrystalline wood charcoal exhibited strong interfacial bonding and interlocking due to even dispersion of the filler particles as revealed by SEM images. Interactions of the microcrystalline wood charcoal fillers with the polyester matrix molecules were revealed by FTIR functional characterization as minor shifts in the frequency bands of functional groups normally present in unsaturated polyester resin.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Investigation of Microcrystalline Wood Charcoal Reinforced Polyester Composites Using ED-XRF, FTIR and SEM-EDS Techniques\",\"authors\":\"Francis Edoziuno, R. Akaluzia\",\"doi\":\"10.35378/gujs.794837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyester based particle reinforced composites were developed using varying weight fractions (ranging from 0 to 30 wt%, at 5 wt% interval) of microcrystalline wood charcoal powder (75µm). Quantitative, qualitative and functional characterization of developed wood charcoal (WC) particles reinforced polyester matrix composites was carried out successfully using energy dispersive x-ray spectrophotometer (EDXRF), Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) enhanced with ancillary EDS for elemental identification capability. The primary elements and oxides identified in wood charcoal by EDXRF include iron, copper, zinc, calcium and CaO, Fe2O3, CuO, ZnO respectively. These elements and oxides were noted to induce improvement on the properties of reinforced polymer composites. EDS elemental mapping also confirmed the major elements identified by EDXRF analysis. Composites reinforced with microcrystalline wood charcoal exhibited strong interfacial bonding and interlocking due to even dispersion of the filler particles as revealed by SEM images. Interactions of the microcrystalline wood charcoal fillers with the polyester matrix molecules were revealed by FTIR functional characterization as minor shifts in the frequency bands of functional groups normally present in unsaturated polyester resin.\",\"PeriodicalId\":12615,\"journal\":{\"name\":\"gazi university journal of science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"gazi university journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35378/gujs.794837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.794837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Analytical Investigation of Microcrystalline Wood Charcoal Reinforced Polyester Composites Using ED-XRF, FTIR and SEM-EDS Techniques
Polyester based particle reinforced composites were developed using varying weight fractions (ranging from 0 to 30 wt%, at 5 wt% interval) of microcrystalline wood charcoal powder (75µm). Quantitative, qualitative and functional characterization of developed wood charcoal (WC) particles reinforced polyester matrix composites was carried out successfully using energy dispersive x-ray spectrophotometer (EDXRF), Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) enhanced with ancillary EDS for elemental identification capability. The primary elements and oxides identified in wood charcoal by EDXRF include iron, copper, zinc, calcium and CaO, Fe2O3, CuO, ZnO respectively. These elements and oxides were noted to induce improvement on the properties of reinforced polymer composites. EDS elemental mapping also confirmed the major elements identified by EDXRF analysis. Composites reinforced with microcrystalline wood charcoal exhibited strong interfacial bonding and interlocking due to even dispersion of the filler particles as revealed by SEM images. Interactions of the microcrystalline wood charcoal fillers with the polyester matrix molecules were revealed by FTIR functional characterization as minor shifts in the frequency bands of functional groups normally present in unsaturated polyester resin.
期刊介绍:
The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.