使用室内低光环境的先前交叉源地图进行无漂移定位

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Junyi Tao, Weichen Dai, Da Kong, Jiayan Wan, Bin He, Yu Zhang
{"title":"使用室内低光环境的先前交叉源地图进行无漂移定位","authors":"Junyi Tao,&nbsp;Weichen Dai,&nbsp;Da Kong,&nbsp;Jiayan Wan,&nbsp;Bin He,&nbsp;Yu Zhang","doi":"10.1049/csy2.12081","DOIUrl":null,"url":null,"abstract":"<p>In this study, a localisation system without cumulative errors is proposed. First, depth odometry is achieved only by using the depth information from the depth camera. Then the point cloud cross-source map registration is realised by 3D particle filtering to obtain the pose of the point cloud relative to the map. Furthermore, we fuse the odometry results with the point cloud to map registration results, so the system can operate effectively even if the map is incomplete. The effectiveness of the system for long-term localisation, localisation in the incomplete map, and localisation in low light through multiple experiments on the self-recorded dataset is demonstrated. Compared with other methods, the results are better than theirs and achieve high indoor localisation accuracy.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12081","citationCount":"0","resultStr":"{\"title\":\"Drift-free localisation using prior cross-source map for indoor low-light environments\",\"authors\":\"Junyi Tao,&nbsp;Weichen Dai,&nbsp;Da Kong,&nbsp;Jiayan Wan,&nbsp;Bin He,&nbsp;Yu Zhang\",\"doi\":\"10.1049/csy2.12081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a localisation system without cumulative errors is proposed. First, depth odometry is achieved only by using the depth information from the depth camera. Then the point cloud cross-source map registration is realised by 3D particle filtering to obtain the pose of the point cloud relative to the map. Furthermore, we fuse the odometry results with the point cloud to map registration results, so the system can operate effectively even if the map is incomplete. The effectiveness of the system for long-term localisation, localisation in the incomplete map, and localisation in low light through multiple experiments on the self-recorded dataset is demonstrated. Compared with other methods, the results are better than theirs and achieve high indoor localisation accuracy.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种无累积误差的定位系统。首先,深度里程测量仅利用深度相机的深度信息来实现。然后通过三维粒子滤波实现点云跨源地图配准,获得点云相对于地图的位姿;此外,我们将里程计结果与点云融合到地图配准结果中,使得系统即使在地图不完整的情况下也能有效地运行。通过在自记录数据集上的多次实验,证明了该系统在长期定位、不完整地图定位和弱光下定位方面的有效性。与其他方法相比,结果优于其他方法,实现了较高的室内定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drift-free localisation using prior cross-source map for indoor low-light environments

Drift-free localisation using prior cross-source map for indoor low-light environments

In this study, a localisation system without cumulative errors is proposed. First, depth odometry is achieved only by using the depth information from the depth camera. Then the point cloud cross-source map registration is realised by 3D particle filtering to obtain the pose of the point cloud relative to the map. Furthermore, we fuse the odometry results with the point cloud to map registration results, so the system can operate effectively even if the map is incomplete. The effectiveness of the system for long-term localisation, localisation in the incomplete map, and localisation in low light through multiple experiments on the self-recorded dataset is demonstrated. Compared with other methods, the results are better than theirs and achieve high indoor localisation accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信