抛物型正弦-戈登方程的无条件保极大原理参数积分因子两步龙格-库塔格式

IF 1.2 Q2 MATHEMATICS, APPLIED
Hong Zhang, Xu Qian, Jun Xia null, Songhe Song
{"title":"抛物型正弦-戈登方程的无条件保极大原理参数积分因子两步龙格-库塔格式","authors":"Hong Zhang, Xu Qian, Jun Xia null, Songhe Song","doi":"10.4208/csiam-am.so-2022-0019","DOIUrl":null,"url":null,"abstract":". We present a systematic two-step approach to derive temporal up to the eighth-order, unconditionally maximum-principle-preserving schemes for a semilin-ear parabolic sine-Gordon equation and its conservative modification. By introducing a stabilization term to an explicit integrating factor approach, and designing suitable approximations to the exponential functions, we propose a unified parametric two-step Runge-Kutta framework to conserve the linear invariant of the original system. To preserve the maximum principle unconditionally, we develop parametric integrating factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the Butcher coefficients and non-decreasing constraint of the abscissas. The order conditions, linear stability, and convergence in the L ∞ -norm are analyzed. Theoretical and numerical results demonstrate that the proposed framework, which is explicit and free of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective approach to develop high-order inequality-preserving and linear-invariant-conserving algorithms.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations\",\"authors\":\"Hong Zhang, Xu Qian, Jun Xia null, Songhe Song\",\"doi\":\"10.4208/csiam-am.so-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present a systematic two-step approach to derive temporal up to the eighth-order, unconditionally maximum-principle-preserving schemes for a semilin-ear parabolic sine-Gordon equation and its conservative modification. By introducing a stabilization term to an explicit integrating factor approach, and designing suitable approximations to the exponential functions, we propose a unified parametric two-step Runge-Kutta framework to conserve the linear invariant of the original system. To preserve the maximum principle unconditionally, we develop parametric integrating factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the Butcher coefficients and non-decreasing constraint of the abscissas. The order conditions, linear stability, and convergence in the L ∞ -norm are analyzed. Theoretical and numerical results demonstrate that the proposed framework, which is explicit and free of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective approach to develop high-order inequality-preserving and linear-invariant-conserving algorithms.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.so-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

. 给出了一种系统的两步法,导出了半线性耳抛物型正弦-戈登方程的八阶时间无条件最大保原理格式及其保守修正。通过在显式积分因子方法中引入稳定项,设计合适的指数函数近似,提出了一种统一的参数两步龙格-库塔框架,以保持原系统的线性不变性。为了无条件地保持极大值原则,我们利用Butcher系数的非负性和横坐标的非递减约束,建立了参数积分因子两步龙格-库塔格式。分析了L∞范数的阶条件、线性稳定性和收敛性。理论和数值结果表明,该框架明确且没有限制、截断后处理或指数效应,为开发高阶不等式保持和线性不变保持算法提供了一种简洁有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations
. We present a systematic two-step approach to derive temporal up to the eighth-order, unconditionally maximum-principle-preserving schemes for a semilin-ear parabolic sine-Gordon equation and its conservative modification. By introducing a stabilization term to an explicit integrating factor approach, and designing suitable approximations to the exponential functions, we propose a unified parametric two-step Runge-Kutta framework to conserve the linear invariant of the original system. To preserve the maximum principle unconditionally, we develop parametric integrating factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the Butcher coefficients and non-decreasing constraint of the abscissas. The order conditions, linear stability, and convergence in the L ∞ -norm are analyzed. Theoretical and numerical results demonstrate that the proposed framework, which is explicit and free of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective approach to develop high-order inequality-preserving and linear-invariant-conserving algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信