拟阵的拉格朗日组合

Q3 Mathematics
Federico Ardila, G. Denham, June Huh
{"title":"拟阵的拉格朗日组合","authors":"Federico Ardila, G. Denham, June Huh","doi":"10.5802/alco.263","DOIUrl":null,"url":null,"abstract":"The Lagrangian geometry of matroids was introduced in [ADH20] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions $\\gamma$ and $\\delta$ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski's conjecture that this h-vector is a log-concave sequence. This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial strengthening of the $h$-vector computation: we write the k-th mixed intersection of $\\gamma$ and $\\delta$ explicitly as a sum of biflags corresponding to the nbc-bases of internal activity k+1.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lagrangian combinatorics of matroids\",\"authors\":\"Federico Ardila, G. Denham, June Huh\",\"doi\":\"10.5802/alco.263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lagrangian geometry of matroids was introduced in [ADH20] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions $\\\\gamma$ and $\\\\delta$ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski's conjecture that this h-vector is a log-concave sequence. This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial strengthening of the $h$-vector computation: we write the k-th mixed intersection of $\\\\gamma$ and $\\\\delta$ explicitly as a sum of biflags corresponding to the nbc-bases of internal activity k+1.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

在[ADD20]中,通过构造拟阵M的共形扇,引入了拟阵的拉格朗日几何。我们用共形扇对M的破环复形的h向量给出了拉格朗日几何解释:它的项是某些凸分段线性函数$\gamma$和$\delta$在M的共型扇上的混合相交度。通过证明共形扇满足Hodge-Riemann关系,我们证明了Brylawski的猜想,即这个h向量是一个对数凹序列。这部续集探索了拟阵的拉格朗日组合数学,进一步发展了拟阵双平面和双滞后的组合数学,并将其与Tutte、Crapo和Las Vergnas发展的基活动理论联系起来。我们的主要结果是$h$-向量计算的组合加强:我们将$\gamma$和$\delta$的第k个混合交集明确地写成对应于内部活动k+1的nbc基的双滞后的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian combinatorics of matroids
The Lagrangian geometry of matroids was introduced in [ADH20] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions $\gamma$ and $\delta$ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski's conjecture that this h-vector is a log-concave sequence. This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial strengthening of the $h$-vector computation: we write the k-th mixed intersection of $\gamma$ and $\delta$ explicitly as a sum of biflags corresponding to the nbc-bases of internal activity k+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信