Hilbert空间中正算子的积分变换的梯度不等式

IF 0.4 Q4 MATHEMATICS
S. Dragomir
{"title":"Hilbert空间中正算子的积分变换的梯度不等式","authors":"S. Dragomir","doi":"10.2478/amsil-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ), \\mathcal{D}\\left( {w,\\mu } \\right)\\left( T \\right): = \\int_0^\\infty {w\\left( \\lambda \\right){{\\left( {\\lambda + T} \\right)}^{ - 1}}d\\mu \\left( \\lambda \\right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0≤-m𝒟′(w,μ)(δ)≤𝒟(w,μ)(A)-𝒟(w,μ)(B)≤-M𝒟′(w,μ)(α), 0 \\le - m\\mathcal{D}'\\left( {w,\\mu } \\right)\\left( \\delta \\right) \\le \\mathcal{D}\\left( {w,\\mu } \\right)\\left( A \\right) - \\mathcal{D}\\left( {w,\\mu } \\right)\\left( B \\right) \\le - M\\mathcal{D}'\\left( {w,\\mu } \\right)\\left( \\alpha \\right), where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. If f : [0, ∞) → ℝ is operator monotone on [0, ∞) with f (0) = 0, then 0≤mδ2[ f(δ)-f′(δ)δ≤f(A)A-1-f(B)B-1 ]≤Mα2[ f(α)-f′(α)α ]. \\matrix{ {0 \\le {m \\over {{\\delta ^2}}}\\left[ {f\\left( \\delta \\right) - f'\\left( \\delta \\right)\\delta \\le f\\left( A \\right){A^{ - 1}} - f{{\\left( B \\right)}^{B - 1}}} \\right]} \\cr { \\le {M \\over {{\\alpha ^2}}}\\left[ {f\\left( \\alpha \\right) - f'\\left( \\alpha \\right)\\alpha } \\right].} \\cr } Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"0 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces\",\"authors\":\"S. Dragomir\",\"doi\":\"10.2478/amsil-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ), \\\\mathcal{D}\\\\left( {w,\\\\mu } \\\\right)\\\\left( T \\\\right): = \\\\int_0^\\\\infty {w\\\\left( \\\\lambda \\\\right){{\\\\left( {\\\\lambda + T} \\\\right)}^{ - 1}}d\\\\mu \\\\left( \\\\lambda \\\\right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0≤-m𝒟′(w,μ)(δ)≤𝒟(w,μ)(A)-𝒟(w,μ)(B)≤-M𝒟′(w,μ)(α), 0 \\\\le - m\\\\mathcal{D}'\\\\left( {w,\\\\mu } \\\\right)\\\\left( \\\\delta \\\\right) \\\\le \\\\mathcal{D}\\\\left( {w,\\\\mu } \\\\right)\\\\left( A \\\\right) - \\\\mathcal{D}\\\\left( {w,\\\\mu } \\\\right)\\\\left( B \\\\right) \\\\le - M\\\\mathcal{D}'\\\\left( {w,\\\\mu } \\\\right)\\\\left( \\\\alpha \\\\right), where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. If f : [0, ∞) → ℝ is operator monotone on [0, ∞) with f (0) = 0, then 0≤mδ2[ f(δ)-f′(δ)δ≤f(A)A-1-f(B)B-1 ]≤Mα2[ f(α)-f′(α)α ]. \\\\matrix{ {0 \\\\le {m \\\\over {{\\\\delta ^2}}}\\\\left[ {f\\\\left( \\\\delta \\\\right) - f'\\\\left( \\\\delta \\\\right)\\\\delta \\\\le f\\\\left( A \\\\right){A^{ - 1}} - f{{\\\\left( B \\\\right)}^{B - 1}}} \\\\right]} \\\\cr { \\\\le {M \\\\over {{\\\\alpha ^2}}}\\\\left[ {f\\\\left( \\\\alpha \\\\right) - f'\\\\left( \\\\alpha \\\\right)\\\\alpha } \\\\right].} \\\\cr } Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"0 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于连续正函数w(λ), λ > 0和µa在(0,∞)上的正测度,我们考虑以下积分变换:=∫0∞w(λ)(λ+T)-1dμ(λ), \mathcal{D}\left( {w,\mu } \right)\left(1) \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + t} \right)}^{ - 1}}d\mu \left( \lambda \right),} 假设T是复希尔伯特空间h上的一个正算子,其中积分存在,假设对于某些常数α, δ, m, m, a≥α >, δ≥B >,且0 < m≤B - a≤m,则0≤-m′(w,μ)(δ)≤(w,μ)(a)- (w,μ)(B)≤- m′(w,μ)(α), 0 \le - m\mathcal{D}'\left( {w,\mu } \right)\left( \delta \right) \le \mathcal{D}\left( {w,\mu } \right)\left(a) \right)—— \mathcal{D}\left( {w,\mu } \right)\left(b) \right) \le - m\mathcal{D}'\left( {w,\mu } \right)\left( \alpha \right),其中D ' (w,µ)(t)是D(w,µ)(t)作为t的函数的导数。若f:[0,∞)→f在[0,∞)上是算子单调,且f(0) = 0,则0≤mδ2[f(δ)-f ' (δ)δ≤f(A)A-1-f(B)B-1]≤Mα2[f(α)-f ' (α)α]。 \matrix{ {0 \le {m \over {{\delta ^2}}}\left[ {f\left( \delta \right) - f'\left( \delta \right)\delta \le f\left( A \right){A^{ - 1}} - f{{\left( B \right)}^{B - 1}}} \right]} \cr { \le {M \over {{\alpha ^2}}}\left[ {f\left( \alpha \right) - f'\left( \alpha \right)\alpha } \right].} \cr } 给出了算子凸函数以及与指数函数和对数函数相关的积分变换D(·,·)的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces
Abstract For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ), \mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0≤-m𝒟′(w,μ)(δ)≤𝒟(w,μ)(A)-𝒟(w,μ)(B)≤-M𝒟′(w,μ)(α), 0 \le - m\mathcal{D}'\left( {w,\mu } \right)\left( \delta \right) \le \mathcal{D}\left( {w,\mu } \right)\left( A \right) - \mathcal{D}\left( {w,\mu } \right)\left( B \right) \le - M\mathcal{D}'\left( {w,\mu } \right)\left( \alpha \right), where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. If f : [0, ∞) → ℝ is operator monotone on [0, ∞) with f (0) = 0, then 0≤mδ2[ f(δ)-f′(δ)δ≤f(A)A-1-f(B)B-1 ]≤Mα2[ f(α)-f′(α)α ]. \matrix{ {0 \le {m \over {{\delta ^2}}}\left[ {f\left( \delta \right) - f'\left( \delta \right)\delta \le f\left( A \right){A^{ - 1}} - f{{\left( B \right)}^{B - 1}}} \right]} \cr { \le {M \over {{\alpha ^2}}}\left[ {f\left( \alpha \right) - f'\left( \alpha \right)\alpha } \right].} \cr } Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信