一类具有非线性边界时滞和源项的kirchhoff型方程解的整体存在性、渐近性和爆破性

IF 0.8 4区 数学 Q2 MATHEMATICS
Houria Kamache, N. Boumaza, Billel Gheraibia
{"title":"一类具有非线性边界时滞和源项的kirchhoff型方程解的整体存在性、渐近性和爆破性","authors":"Houria Kamache, N. Boumaza, Billel Gheraibia","doi":"10.55730/1300-0098.3433","DOIUrl":null,"url":null,"abstract":": The main goal of this work is to study an initial boundary value problem for a Kirchhoff-type equation with nonlinear boundary delay and source terms. This paper is devoted to prove the global existence, decay, and the blow up of solutions. To the best of our knowledge, there are not results on the Kirchhoff type-equation with nonlinear boundary delay and source terms","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global existence, asymptotic behavior and blow up of solutions for a Kirchhoff-type equation with nonlinear boundary delay and source terms\",\"authors\":\"Houria Kamache, N. Boumaza, Billel Gheraibia\",\"doi\":\"10.55730/1300-0098.3433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The main goal of this work is to study an initial boundary value problem for a Kirchhoff-type equation with nonlinear boundary delay and source terms. This paper is devoted to prove the global existence, decay, and the blow up of solutions. To the best of our knowledge, there are not results on the Kirchhoff type-equation with nonlinear boundary delay and source terms\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3433\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3433","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是研究一类具有非线性边界延迟和源项的kirchhoff型方程的初边值问题。本文致力于证明解的全局存在性、衰减性和爆破性。据我们所知,对于具有非线性边界延迟和源项的Kirchhoff型方程,目前还没有结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence, asymptotic behavior and blow up of solutions for a Kirchhoff-type equation with nonlinear boundary delay and source terms
: The main goal of this work is to study an initial boundary value problem for a Kirchhoff-type equation with nonlinear boundary delay and source terms. This paper is devoted to prove the global existence, decay, and the blow up of solutions. To the best of our knowledge, there are not results on the Kirchhoff type-equation with nonlinear boundary delay and source terms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信