Finsler流形与Finsler球面等距的若干条件

Pub Date : 2022-01-01 DOI:10.1515/agms-2022-0142
S. Yin, Huarong Wang
{"title":"Finsler流形与Finsler球面等距的若干条件","authors":"S. Yin, Huarong Wang","doi":"10.1515/agms-2022-0142","DOIUrl":null,"url":null,"abstract":"Abstract We show that if there is a smooth function f on a Finsler n-space M satisfying Δ2f = −kfgΔf for a positive constant k, then M is diffeomorphic with the n-sphere 𝕊n, where g denotes the weighted Riemannian metric. Moreover, we further show that the manifold is isometric to a Finsler sphere if the Ricci curvature is bounded below by (n − [one.tf])k and the S-curvature vanishes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certain Conditions for a Finsler Manifold to Be Isometric with a Finsler Sphere\",\"authors\":\"S. Yin, Huarong Wang\",\"doi\":\"10.1515/agms-2022-0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that if there is a smooth function f on a Finsler n-space M satisfying Δ2f = −kfgΔf for a positive constant k, then M is diffeomorphic with the n-sphere 𝕊n, where g denotes the weighted Riemannian metric. Moreover, we further show that the manifold is isometric to a Finsler sphere if the Ricci curvature is bounded below by (n − [one.tf])k and the S-curvature vanishes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们证明了如果在Finsler n空间M上存在一个光滑函数f,对于正常数k满足Δ2f =−kfgΔf,则M与n球𝕊n是微分同态的,其中g表示权黎曼度规。此外,我们进一步证明了如果里奇曲率以(n−[1 .tf])k为界且s曲率消失,流形与Finsler球是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Certain Conditions for a Finsler Manifold to Be Isometric with a Finsler Sphere
Abstract We show that if there is a smooth function f on a Finsler n-space M satisfying Δ2f = −kfgΔf for a positive constant k, then M is diffeomorphic with the n-sphere 𝕊n, where g denotes the weighted Riemannian metric. Moreover, we further show that the manifold is isometric to a Finsler sphere if the Ricci curvature is bounded below by (n − [one.tf])k and the S-curvature vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信