{"title":"基于细分市场的最优促销策略混合规划模型的建立","authors":"Y. Ekinci, A. Güran","doi":"10.1177/14707853221139599","DOIUrl":null,"url":null,"abstract":"The study addresses the long-term effects of promotions in terms of movement in a value-based segmentation (lead, iron, gold, platinum), instead of simply looking at response rates that occur shortly after the promotion. The study develops a framework for planning an optimal promotion strategy via Markov Decision Processes and Machine Learning methods for an online department store. In the first phase, the states are set as the customer profitability segments in order to conduct the MDPs. Then, MDP model is solved, and the optimal decision for each segment is determined. In the second phase, in order to aid the company for making their plans for the next year, the segment that the customer will belong to next year should be predicted. Prediction of the future customer profitability segment is performed by using several machine learning algorithms, and the best performing model is selected. Using this best performing model, the company can predict the future (potential) profitability segment of the customer and make plans which include the optimal promotions that will be directed to the customers depending on their segments (these optimal promotions are the outcomes of the first phase). The proposed framework can be applied by practitioners in e-commerce companies which keep customer data.","PeriodicalId":47641,"journal":{"name":"International Journal of Market Research","volume":"65 1","pages":"642 - 662"},"PeriodicalIF":2.4000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a hybrid model to plan segment based optimal promotion strategy\",\"authors\":\"Y. Ekinci, A. Güran\",\"doi\":\"10.1177/14707853221139599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study addresses the long-term effects of promotions in terms of movement in a value-based segmentation (lead, iron, gold, platinum), instead of simply looking at response rates that occur shortly after the promotion. The study develops a framework for planning an optimal promotion strategy via Markov Decision Processes and Machine Learning methods for an online department store. In the first phase, the states are set as the customer profitability segments in order to conduct the MDPs. Then, MDP model is solved, and the optimal decision for each segment is determined. In the second phase, in order to aid the company for making their plans for the next year, the segment that the customer will belong to next year should be predicted. Prediction of the future customer profitability segment is performed by using several machine learning algorithms, and the best performing model is selected. Using this best performing model, the company can predict the future (potential) profitability segment of the customer and make plans which include the optimal promotions that will be directed to the customers depending on their segments (these optimal promotions are the outcomes of the first phase). The proposed framework can be applied by practitioners in e-commerce companies which keep customer data.\",\"PeriodicalId\":47641,\"journal\":{\"name\":\"International Journal of Market Research\",\"volume\":\"65 1\",\"pages\":\"642 - 662\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Market Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/14707853221139599\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Market Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/14707853221139599","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
Development of a hybrid model to plan segment based optimal promotion strategy
The study addresses the long-term effects of promotions in terms of movement in a value-based segmentation (lead, iron, gold, platinum), instead of simply looking at response rates that occur shortly after the promotion. The study develops a framework for planning an optimal promotion strategy via Markov Decision Processes and Machine Learning methods for an online department store. In the first phase, the states are set as the customer profitability segments in order to conduct the MDPs. Then, MDP model is solved, and the optimal decision for each segment is determined. In the second phase, in order to aid the company for making their plans for the next year, the segment that the customer will belong to next year should be predicted. Prediction of the future customer profitability segment is performed by using several machine learning algorithms, and the best performing model is selected. Using this best performing model, the company can predict the future (potential) profitability segment of the customer and make plans which include the optimal promotions that will be directed to the customers depending on their segments (these optimal promotions are the outcomes of the first phase). The proposed framework can be applied by practitioners in e-commerce companies which keep customer data.
期刊介绍:
The International Journal of Market Research is the essential professional aid for users and providers of market research. IJMR will help you to: KEEP abreast of cutting-edge developments APPLY new research approaches to your business UNDERSTAND new tools and techniques LEARN from the world’s leading research thinkers STAY at the forefront of your profession