肽底物对接和基于MD评分的开放协议

Rodrigo Ochoa , Ángel Santiago , Melissa Alegría-Arcos
{"title":"肽底物对接和基于MD评分的开放协议","authors":"Rodrigo Ochoa ,&nbsp;Ángel Santiago ,&nbsp;Melissa Alegría-Arcos","doi":"10.1016/j.ailsci.2022.100044","DOIUrl":null,"url":null,"abstract":"<div><p>The study of protein-peptide interactions is an active research field from an experimental and computational perspective, with the latest presenting challenges to model and simulate the peptides' intrinsic flexibility. Predicting affinities towards protein systems of interest, such as proteases, is crucial to understand the specificity of the interactions and support the discovery of novel substrates. Here we provide a set of computational protocols to run structural and dynamical analysis of protein-peptide complexes from a binding perspective. The protocols are based on state-of-the-art methods, but the code is open and can be customized depending on the user needs. These include a fragment-growing peptide docking protocol to predict bound conformations of flexible peptides, a protocol to extract descriptors from protein-peptide molecular dynamics trajectories, and a workflow to build and test machine learning regression models. As a toy example, we applied the protocols to a serine protease structure with a set of known peptide substrates and random sequences to illustrate the use of the code, which is publicly available at: <span>https://github.com/rochoa85/Protocols-Peptide-Binding</span><svg><path></path></svg></p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"2 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318522000149/pdfft?md5=37f48baa6e0b2e91691325276818a26d&pid=1-s2.0-S2667318522000149-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Open protocols for docking and MD-based scoring of peptide substrates\",\"authors\":\"Rodrigo Ochoa ,&nbsp;Ángel Santiago ,&nbsp;Melissa Alegría-Arcos\",\"doi\":\"10.1016/j.ailsci.2022.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of protein-peptide interactions is an active research field from an experimental and computational perspective, with the latest presenting challenges to model and simulate the peptides' intrinsic flexibility. Predicting affinities towards protein systems of interest, such as proteases, is crucial to understand the specificity of the interactions and support the discovery of novel substrates. Here we provide a set of computational protocols to run structural and dynamical analysis of protein-peptide complexes from a binding perspective. The protocols are based on state-of-the-art methods, but the code is open and can be customized depending on the user needs. These include a fragment-growing peptide docking protocol to predict bound conformations of flexible peptides, a protocol to extract descriptors from protein-peptide molecular dynamics trajectories, and a workflow to build and test machine learning regression models. As a toy example, we applied the protocols to a serine protease structure with a set of known peptide substrates and random sequences to illustrate the use of the code, which is publicly available at: <span>https://github.com/rochoa85/Protocols-Peptide-Binding</span><svg><path></path></svg></p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"2 \",\"pages\":\"Article 100044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667318522000149/pdfft?md5=37f48baa6e0b2e91691325276818a26d&pid=1-s2.0-S2667318522000149-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318522000149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318522000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从实验和计算的角度来看,蛋白质-肽相互作用的研究是一个活跃的研究领域,最新的挑战是建立和模拟肽的内在灵活性。预测对感兴趣的蛋白质系统(如蛋白酶)的亲和力对于理解相互作用的特异性和支持新底物的发现至关重要。在这里,我们提供了一套计算协议运行结构和动态分析的蛋白质-肽复合物从结合的角度。这些协议基于最先进的方法,但代码是开放的,可以根据用户的需要进行定制。其中包括用于预测柔性肽结合构象的片段生长肽对接协议,用于从蛋白质-肽分子动力学轨迹中提取描述符的协议,以及构建和测试机器学习回归模型的工作流程。作为一个简单的例子,我们将该协议应用于具有一组已知肽底物和随机序列的丝氨酸蛋白酶结构,以说明该代码的使用,该代码可在:https://github.com/rochoa85/Protocols-Peptide-Binding上公开获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open protocols for docking and MD-based scoring of peptide substrates

The study of protein-peptide interactions is an active research field from an experimental and computational perspective, with the latest presenting challenges to model and simulate the peptides' intrinsic flexibility. Predicting affinities towards protein systems of interest, such as proteases, is crucial to understand the specificity of the interactions and support the discovery of novel substrates. Here we provide a set of computational protocols to run structural and dynamical analysis of protein-peptide complexes from a binding perspective. The protocols are based on state-of-the-art methods, but the code is open and can be customized depending on the user needs. These include a fragment-growing peptide docking protocol to predict bound conformations of flexible peptides, a protocol to extract descriptors from protein-peptide molecular dynamics trajectories, and a workflow to build and test machine learning regression models. As a toy example, we applied the protocols to a serine protease structure with a set of known peptide substrates and random sequences to illustrate the use of the code, which is publicly available at: https://github.com/rochoa85/Protocols-Peptide-Binding

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信