时间分数Riesz空间扩散方程的两种显式和隐式有限差分格式

IF 1.1 Q2 MATHEMATICS, APPLIED
Z. Abdollahy, Y. Mahmoudi, A. S. Shamloo, M. Baghmisheh
{"title":"时间分数Riesz空间扩散方程的两种显式和隐式有限差分格式","authors":"Z. Abdollahy, Y. Mahmoudi, A. S. Shamloo, M. Baghmisheh","doi":"10.22034/CMDE.2021.45950.1927","DOIUrl":null,"url":null,"abstract":"In this study, one explicit and one implicit finite differencescheme is introduced for the numerical solution of time-fractionalRiesz space diffusion equation. The time derivative is approximatedby the standard Gr\"{u}nwald Letnikov formula of order one, whilethe Riesz space derivative is discretized by Fourier transform-basedalgorithm of order four. The stability and convergence of theproposed methods are studied. It is proved that the implicit schemeis unconditionally stable, while the explicit scheme is stableconditionally. Some examples are solved to illustrate the efficiencyand accuracy of the proposed methods. Numerical results confirm thatthe accuracy of present schemes is of order one.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion equation\",\"authors\":\"Z. Abdollahy, Y. Mahmoudi, A. S. Shamloo, M. Baghmisheh\",\"doi\":\"10.22034/CMDE.2021.45950.1927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, one explicit and one implicit finite differencescheme is introduced for the numerical solution of time-fractionalRiesz space diffusion equation. The time derivative is approximatedby the standard Gr\\\"{u}nwald Letnikov formula of order one, whilethe Riesz space derivative is discretized by Fourier transform-basedalgorithm of order four. The stability and convergence of theproposed methods are studied. It is proved that the implicit schemeis unconditionally stable, while the explicit scheme is stableconditionally. Some examples are solved to illustrate the efficiencyand accuracy of the proposed methods. Numerical results confirm thatthe accuracy of present schemes is of order one.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.45950.1927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.45950.1927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了时间分式riesz空间扩散方程数值解的一个显式差分格式和一个隐式差分格式。时间导数由一阶的标准Gr ' {u}nwald Letnikov公式近似,而Riesz空间导数由基于傅里叶变换的四阶算法离散化。研究了所提方法的稳定性和收敛性。证明了隐式格式是无条件稳定的,而显式格式是条件稳定的。算例说明了所提方法的有效性和准确性。数值结果表明,所提格式的精度为1阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion equation
In this study, one explicit and one implicit finite differencescheme is introduced for the numerical solution of time-fractionalRiesz space diffusion equation. The time derivative is approximatedby the standard Gr"{u}nwald Letnikov formula of order one, whilethe Riesz space derivative is discretized by Fourier transform-basedalgorithm of order four. The stability and convergence of theproposed methods are studied. It is proved that the implicit schemeis unconditionally stable, while the explicit scheme is stableconditionally. Some examples are solved to illustrate the efficiencyand accuracy of the proposed methods. Numerical results confirm thatthe accuracy of present schemes is of order one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信