具有非线性消去的蒙特卡罗热辐射传递求解器

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
Adam Q. Lam, T. Palmer, T. Brunner, R. Vega
{"title":"具有非线性消去的蒙特卡罗热辐射传递求解器","authors":"Adam Q. Lam, T. Palmer, T. Brunner, R. Vega","doi":"10.1080/23324309.2023.2223410","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present a new Monte Carlo method for solving the thermal radiative transfer (TRT) equations via the method of nonlinear elimination (NLEM). This method is inspired by the previous application of NLEM to thermal radiation diffusion. Our approach, called diffusion accelerated Implicit Monte Carlo (DAIMC), is a hybrid technique which combines a Monte Carlo method for solving a purely-absorbing transport equation and a diffusion solution that accounts for effective scattering, or absorption–reemission. The method aims to improve the implicitness of the traditional implicit Monte Carlo (IMC) method. We derive DAIMC generally for 3D Cartesian geometries, but in this paper, we present results and analysis in 1D slab geometry. These preliminary results indicate that DAIMC implementations may provide more accurate and robust TRT solutions than IMC in certain test problems.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"52 1","pages":"221 - 245"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Monte Carlo Thermal Radiative Transfer Solver with Nonlinear Elimination\",\"authors\":\"Adam Q. Lam, T. Palmer, T. Brunner, R. Vega\",\"doi\":\"10.1080/23324309.2023.2223410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present a new Monte Carlo method for solving the thermal radiative transfer (TRT) equations via the method of nonlinear elimination (NLEM). This method is inspired by the previous application of NLEM to thermal radiation diffusion. Our approach, called diffusion accelerated Implicit Monte Carlo (DAIMC), is a hybrid technique which combines a Monte Carlo method for solving a purely-absorbing transport equation and a diffusion solution that accounts for effective scattering, or absorption–reemission. The method aims to improve the implicitness of the traditional implicit Monte Carlo (IMC) method. We derive DAIMC generally for 3D Cartesian geometries, but in this paper, we present results and analysis in 1D slab geometry. These preliminary results indicate that DAIMC implementations may provide more accurate and robust TRT solutions than IMC in certain test problems.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"52 1\",\"pages\":\"221 - 245\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2023.2223410\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2023.2223410","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们提出了一种新的蒙特卡罗方法,通过非线性消去法(NLEM)求解热辐射传输(TRT)方程。该方法的灵感来源于之前NLEM在热辐射扩散中的应用。我们的方法称为扩散加速隐式蒙特卡罗(DAIMC),是一种混合技术,它结合了求解纯吸收输运方程的蒙特卡罗方法和考虑有效散射或吸收-再发射的扩散解。该方法旨在提高传统隐式蒙特卡罗(IMC)方法的隐式性。我们通常导出三维笛卡尔几何的DAIMC,但在本文中,我们给出了一维板几何的结果和分析。这些初步结果表明,在某些测试问题中,DAIMC实现可以提供比IMC更准确、更稳健的TRT解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monte Carlo Thermal Radiative Transfer Solver with Nonlinear Elimination
Abstract In this paper, we present a new Monte Carlo method for solving the thermal radiative transfer (TRT) equations via the method of nonlinear elimination (NLEM). This method is inspired by the previous application of NLEM to thermal radiation diffusion. Our approach, called diffusion accelerated Implicit Monte Carlo (DAIMC), is a hybrid technique which combines a Monte Carlo method for solving a purely-absorbing transport equation and a diffusion solution that accounts for effective scattering, or absorption–reemission. The method aims to improve the implicitness of the traditional implicit Monte Carlo (IMC) method. We derive DAIMC generally for 3D Cartesian geometries, but in this paper, we present results and analysis in 1D slab geometry. These preliminary results indicate that DAIMC implementations may provide more accurate and robust TRT solutions than IMC in certain test problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信