Loeb扩张与Loeb等价Ⅱ

IF 0.5 3区 数学 Q3 MATHEMATICS
Duanmu Haosui, David Schrittesser, W. Weiss
{"title":"Loeb扩张与Loeb等价Ⅱ","authors":"Duanmu Haosui, David Schrittesser, W. Weiss","doi":"10.4064/fm163-1-2023","DOIUrl":null,"url":null,"abstract":"The paper answers two open questions that were raised in by Keisler and Sun. The first question asks, if we have two Loeb equivalent spaces $(\\Omega, \\mathcal F, \\mu)$ and $(\\Omega, \\mathcal G, \\nu)$, does there exist an internal probability measure $P$ defined on the internal algebra $\\mathcal H$ generated from $\\mathcal F\\cup \\mathcal G$ such that $(\\Omega, \\mathcal H, P)$ is Loeb equivalent to $(\\Omega, \\mathcal F, \\mu)$? The second open problem asks if the $\\sigma$-product of two $\\sigma$-additive probability spaces is Loeb equivalent to the product of the same two $\\sigma$-additive probability spaces. Continuing work in a previous paper, we give a confirmative answer to the first problem when the underlying internal probability spaces are hyperfinite, a partial answer to the first problem for general internal probability spaces, and settle the second question negatively by giving a counter-example. Finally, we show that the continuity sets in the $\\sigma$-algebra of the $\\sigma$-product space are also in the algebra of the product space.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loeb extension and Loeb equivalence II\",\"authors\":\"Duanmu Haosui, David Schrittesser, W. Weiss\",\"doi\":\"10.4064/fm163-1-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper answers two open questions that were raised in by Keisler and Sun. The first question asks, if we have two Loeb equivalent spaces $(\\\\Omega, \\\\mathcal F, \\\\mu)$ and $(\\\\Omega, \\\\mathcal G, \\\\nu)$, does there exist an internal probability measure $P$ defined on the internal algebra $\\\\mathcal H$ generated from $\\\\mathcal F\\\\cup \\\\mathcal G$ such that $(\\\\Omega, \\\\mathcal H, P)$ is Loeb equivalent to $(\\\\Omega, \\\\mathcal F, \\\\mu)$? The second open problem asks if the $\\\\sigma$-product of two $\\\\sigma$-additive probability spaces is Loeb equivalent to the product of the same two $\\\\sigma$-additive probability spaces. Continuing work in a previous paper, we give a confirmative answer to the first problem when the underlying internal probability spaces are hyperfinite, a partial answer to the first problem for general internal probability spaces, and settle the second question negatively by giving a counter-example. Finally, we show that the continuity sets in the $\\\\sigma$-algebra of the $\\\\sigma$-product space are also in the algebra of the product space.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm163-1-2023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm163-1-2023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这篇论文回答了Keisler和Sun提出的两个悬而未决的问题。第一个问题是,如果我们有两个Loeb等价空间$(\Omega, \mathcal F, \mu)$和$(\Omega, \mathcal G, \nu)$,是否存在一个定义在由$\mathcal F\cup \mathcal G$生成的内部代数$\mathcal H$上的内部概率测度$P$,使得$(\Omega, \mathcal H, P)$等于$(\Omega, \mathcal F, \mu)$ ?第二个开放问题是问两个$\sigma$ -可加概率空间的$\sigma$ -积是否等于相同两个$\sigma$ -可加概率空间的积。在前一篇论文的基础上,我们给出了当潜在的内部概率空间是超有限时第一个问题的确认答案,对于一般的内部概率空间给出第一个问题的部分答案,并通过给出一个反例否定地解决第二个问题。最后,我们证明了$\sigma$ -积空间的$\sigma$ -代数中的连续性集也在积空间的代数中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loeb extension and Loeb equivalence II
The paper answers two open questions that were raised in by Keisler and Sun. The first question asks, if we have two Loeb equivalent spaces $(\Omega, \mathcal F, \mu)$ and $(\Omega, \mathcal G, \nu)$, does there exist an internal probability measure $P$ defined on the internal algebra $\mathcal H$ generated from $\mathcal F\cup \mathcal G$ such that $(\Omega, \mathcal H, P)$ is Loeb equivalent to $(\Omega, \mathcal F, \mu)$? The second open problem asks if the $\sigma$-product of two $\sigma$-additive probability spaces is Loeb equivalent to the product of the same two $\sigma$-additive probability spaces. Continuing work in a previous paper, we give a confirmative answer to the first problem when the underlying internal probability spaces are hyperfinite, a partial answer to the first problem for general internal probability spaces, and settle the second question negatively by giving a counter-example. Finally, we show that the continuity sets in the $\sigma$-algebra of the $\sigma$-product space are also in the algebra of the product space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信