新设计的双移动平均-累积和混合控制图用于检测对称和非对称分布观测值的均值偏移

Q2 Engineering
N. Saengsura, Y. Areepong, S. Sukparungsee
{"title":"新设计的双移动平均-累积和混合控制图用于检测对称和非对称分布观测值的均值偏移","authors":"N. Saengsura, Y. Areepong, S. Sukparungsee","doi":"10.14416/j.asep.2022.12.004","DOIUrl":null,"url":null,"abstract":"Herein, we present a new control chart called the mixed double moving average-cumulative sum control chart (DMA-CUSUM: MDC) used for detecting shifts in the process mean when symmetrically and asymmetrically distributed. The performance of the MDC chart is compared with shewhart, cumulative sum (CUSUM), double moving average (DMA) and mixed cumulative sum-double moving average (CUSUM-DMA: MCD) control charts by using average run length (ARL) and median run length (MRL) with the monte carlo simulation (MC). The research results show that the proposed (MDC) control chart was more efficient than the Shewhart, CUSUM, DMA and MCD charts for all distributions tested. We apply the MDC chart to real sets of data: I) the tensile data of single carbon fiber and II) the survival times of guinea pigs infected with virulent bacilli.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Designing Mixed Double Moving Average-Cumulative Sum Control Chart for Detecting Mean Shifts with Symmetrically and Asymmetrically Distributed Observations\",\"authors\":\"N. Saengsura, Y. Areepong, S. Sukparungsee\",\"doi\":\"10.14416/j.asep.2022.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we present a new control chart called the mixed double moving average-cumulative sum control chart (DMA-CUSUM: MDC) used for detecting shifts in the process mean when symmetrically and asymmetrically distributed. The performance of the MDC chart is compared with shewhart, cumulative sum (CUSUM), double moving average (DMA) and mixed cumulative sum-double moving average (CUSUM-DMA: MCD) control charts by using average run length (ARL) and median run length (MRL) with the monte carlo simulation (MC). The research results show that the proposed (MDC) control chart was more efficient than the Shewhart, CUSUM, DMA and MCD charts for all distributions tested. We apply the MDC chart to real sets of data: I) the tensile data of single carbon fiber and II) the survival times of guinea pigs infected with virulent bacilli.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2022.12.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2022.12.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们提出了一种新的控制图,称为混合双移动平均-累积和控制图(DMA-CUSUM: MDC),用于检测过程均值在对称和非对称分布时的移位。通过使用平均运行长度(ARL)和中位数运行长度(MRL)和蒙特卡罗模拟(MC),将MDC图的性能与shewhart、累积和(CUSUM)、双移动平均(DMA)和混合累积和-双移动平均(CUSUM-DMA: MCD)控制图进行比较。研究结果表明,对于所有测试的分布,所提出的(MDC)控制图比Shewhart、CUSUM、DMA和MCD图更有效。我们将MDC图表应用于实际数据集:I)单个碳纤维的拉伸数据和II)感染毒性杆菌的豚鼠的存活时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Designing Mixed Double Moving Average-Cumulative Sum Control Chart for Detecting Mean Shifts with Symmetrically and Asymmetrically Distributed Observations
Herein, we present a new control chart called the mixed double moving average-cumulative sum control chart (DMA-CUSUM: MDC) used for detecting shifts in the process mean when symmetrically and asymmetrically distributed. The performance of the MDC chart is compared with shewhart, cumulative sum (CUSUM), double moving average (DMA) and mixed cumulative sum-double moving average (CUSUM-DMA: MCD) control charts by using average run length (ARL) and median run length (MRL) with the monte carlo simulation (MC). The research results show that the proposed (MDC) control chart was more efficient than the Shewhart, CUSUM, DMA and MCD charts for all distributions tested. We apply the MDC chart to real sets of data: I) the tensile data of single carbon fiber and II) the survival times of guinea pigs infected with virulent bacilli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信