{"title":"利用耳石形态分析对本格拉生态系统浅水黑鳕进行种群分离","authors":"Eng Shoopala, M. Wilhelm, SC Paulus","doi":"10.2989/1814232X.2020.1855246","DOIUrl":null,"url":null,"abstract":"The fishing industry is an important economic sector in Namibia and South Africa, with the shallow-water hake Merluccius capensis being an important target species. Recent genetic studies of M. capensis found two stocks in the Benguela Current Large Marine Ecosystem, one in the north (17–29° S) and one in the south (29–36° S), and a proposed mixed stock in the Orange River area (around 29° S). The present study investigated the use of otolith shape analysis for purposes of stock-structure analysis of M. capensis. Merluccius capensis otolith samples were collected during demersal-trawl surveys along the Benguela, for the years 1992, 2004 and 2005. Different years were selected to investigate temporal stability in otolith shape in the northern Benguela. A total of 1 628 otolith images were analysed using the shapeR library in R. Otolith shape was analysed using wavelet transformation, and ANOVA-like permutation tests indicated no significant differences between the northern (17°31′–25°29′ S) and central (25°30′–29°05′ S) Benguela for all years but showed significant differences between the northern and southern (29°05′–35°50′ S) Benguela. This study therefore demonstrated that otolith shape could be used for stock discrimination of M. capensis. It confirmed one stock of M. capensis in the northern and central Benguela and another in the southern Benguela, which supports the current, separate management approach for this species. It also showed some differences in otolith shape from the 1990s to the 2000s, which could be explained by increased movement of the southern Benguela stock to the northern Benguela and increased hybridisation in the later years.","PeriodicalId":7719,"journal":{"name":"African Journal of Marine Science","volume":"43 1","pages":"1 - 14"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stock separation of the shallow-water hake Merluccius capensis in the Benguela ecosystem using otolith shape analysis\",\"authors\":\"Eng Shoopala, M. Wilhelm, SC Paulus\",\"doi\":\"10.2989/1814232X.2020.1855246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fishing industry is an important economic sector in Namibia and South Africa, with the shallow-water hake Merluccius capensis being an important target species. Recent genetic studies of M. capensis found two stocks in the Benguela Current Large Marine Ecosystem, one in the north (17–29° S) and one in the south (29–36° S), and a proposed mixed stock in the Orange River area (around 29° S). The present study investigated the use of otolith shape analysis for purposes of stock-structure analysis of M. capensis. Merluccius capensis otolith samples were collected during demersal-trawl surveys along the Benguela, for the years 1992, 2004 and 2005. Different years were selected to investigate temporal stability in otolith shape in the northern Benguela. A total of 1 628 otolith images were analysed using the shapeR library in R. Otolith shape was analysed using wavelet transformation, and ANOVA-like permutation tests indicated no significant differences between the northern (17°31′–25°29′ S) and central (25°30′–29°05′ S) Benguela for all years but showed significant differences between the northern and southern (29°05′–35°50′ S) Benguela. This study therefore demonstrated that otolith shape could be used for stock discrimination of M. capensis. It confirmed one stock of M. capensis in the northern and central Benguela and another in the southern Benguela, which supports the current, separate management approach for this species. It also showed some differences in otolith shape from the 1990s to the 2000s, which could be explained by increased movement of the southern Benguela stock to the northern Benguela and increased hybridisation in the later years.\",\"PeriodicalId\":7719,\"journal\":{\"name\":\"African Journal of Marine Science\",\"volume\":\"43 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Journal of Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2989/1814232X.2020.1855246\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2989/1814232X.2020.1855246","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Stock separation of the shallow-water hake Merluccius capensis in the Benguela ecosystem using otolith shape analysis
The fishing industry is an important economic sector in Namibia and South Africa, with the shallow-water hake Merluccius capensis being an important target species. Recent genetic studies of M. capensis found two stocks in the Benguela Current Large Marine Ecosystem, one in the north (17–29° S) and one in the south (29–36° S), and a proposed mixed stock in the Orange River area (around 29° S). The present study investigated the use of otolith shape analysis for purposes of stock-structure analysis of M. capensis. Merluccius capensis otolith samples were collected during demersal-trawl surveys along the Benguela, for the years 1992, 2004 and 2005. Different years were selected to investigate temporal stability in otolith shape in the northern Benguela. A total of 1 628 otolith images were analysed using the shapeR library in R. Otolith shape was analysed using wavelet transformation, and ANOVA-like permutation tests indicated no significant differences between the northern (17°31′–25°29′ S) and central (25°30′–29°05′ S) Benguela for all years but showed significant differences between the northern and southern (29°05′–35°50′ S) Benguela. This study therefore demonstrated that otolith shape could be used for stock discrimination of M. capensis. It confirmed one stock of M. capensis in the northern and central Benguela and another in the southern Benguela, which supports the current, separate management approach for this species. It also showed some differences in otolith shape from the 1990s to the 2000s, which could be explained by increased movement of the southern Benguela stock to the northern Benguela and increased hybridisation in the later years.
期刊介绍:
The African (formerly South African) Journal of Marine Science provides an international forum for the publication of original scientific contributions or critical reviews, involving oceanic, shelf or estuarine waters, inclusive of oceanography, studies of organisms and their habitats, and aquaculture. Papers on the conservation and management of living resources, relevant social science and governance, or new techniques, are all welcomed, as are those that integrate different disciplines. Priority will be given to rigorous, question-driven research, rather than descriptive research. Contributions from African waters, including the Southern Ocean, are particularly encouraged, although not to the exclusion of those from elsewhere that have relevance to the African context. Submissions may take the form of a paper or a short communication. The journal aims to achieve a balanced representation of subject areas but also publishes proceedings of symposia in dedicated issues, as well as guest-edited suites on thematic topics in regular issues.