{"title":"关于一类由非负可积分布生成的范数","authors":"M. Falk, G. Stupfler","doi":"10.1515/demo-2019-0014","DOIUrl":null,"url":null,"abstract":"Abstract We show that any distribution function on ℝd with nonnegative, nonzero and integrable marginal distributions can be characterized by a norm on ℝd+1, called F-norm. We characterize the set of F-norms and prove that pointwise convergence of a sequence of F-norms to an F-norm is equivalent to convergence of the pertaining distribution functions in the Wasserstein metric. On the statistical side, an F-norm can easily be estimated by an empirical F-norm, whose consistency and weak convergence we establish. The concept of F-norms can be extended to arbitrary random vectors under suitable integrability conditions fulfilled by, for instance, normal distributions. The set of F-norms is endowed with a semigroup operation which, in this context, corresponds to ordinary convolution of the underlying distributions. Limiting results such as the central limit theorem can then be formulated in terms of pointwise convergence of products of F-norms. We conclude by showing how, using the geometry of F-norms, we may characterize nonnegative integrable distributions in ℝd by simple compact sets in ℝd+1. We then relate convergence of those distributions in the Wasserstein metric to convergence of these characteristic sets with respect to Hausdorff distances.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"259 - 278"},"PeriodicalIF":0.8000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0014","citationCount":"1","resultStr":"{\"title\":\"On a class of norms generated by nonnegative integrable distributions\",\"authors\":\"M. Falk, G. Stupfler\",\"doi\":\"10.1515/demo-2019-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that any distribution function on ℝd with nonnegative, nonzero and integrable marginal distributions can be characterized by a norm on ℝd+1, called F-norm. We characterize the set of F-norms and prove that pointwise convergence of a sequence of F-norms to an F-norm is equivalent to convergence of the pertaining distribution functions in the Wasserstein metric. On the statistical side, an F-norm can easily be estimated by an empirical F-norm, whose consistency and weak convergence we establish. The concept of F-norms can be extended to arbitrary random vectors under suitable integrability conditions fulfilled by, for instance, normal distributions. The set of F-norms is endowed with a semigroup operation which, in this context, corresponds to ordinary convolution of the underlying distributions. Limiting results such as the central limit theorem can then be formulated in terms of pointwise convergence of products of F-norms. We conclude by showing how, using the geometry of F-norms, we may characterize nonnegative integrable distributions in ℝd by simple compact sets in ℝd+1. We then relate convergence of those distributions in the Wasserstein metric to convergence of these characteristic sets with respect to Hausdorff distances.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"259 - 278\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0014\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On a class of norms generated by nonnegative integrable distributions
Abstract We show that any distribution function on ℝd with nonnegative, nonzero and integrable marginal distributions can be characterized by a norm on ℝd+1, called F-norm. We characterize the set of F-norms and prove that pointwise convergence of a sequence of F-norms to an F-norm is equivalent to convergence of the pertaining distribution functions in the Wasserstein metric. On the statistical side, an F-norm can easily be estimated by an empirical F-norm, whose consistency and weak convergence we establish. The concept of F-norms can be extended to arbitrary random vectors under suitable integrability conditions fulfilled by, for instance, normal distributions. The set of F-norms is endowed with a semigroup operation which, in this context, corresponds to ordinary convolution of the underlying distributions. Limiting results such as the central limit theorem can then be formulated in terms of pointwise convergence of products of F-norms. We conclude by showing how, using the geometry of F-norms, we may characterize nonnegative integrable distributions in ℝd by simple compact sets in ℝd+1. We then relate convergence of those distributions in the Wasserstein metric to convergence of these characteristic sets with respect to Hausdorff distances.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations