{"title":"用混合因子隐马尔可夫模型预测投资组合的风险价值","authors":"Mohamed Saidane","doi":"10.17535/crorr.2019.0021","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the statistical modeling of the latent dependence and comovement structures of multivariate financial data using a new approach based on mixed factorial hidden Markov models, and their applications in Value-at-Risk (VaR) valuation. This approach combines hidden Markov Models (HMM) with mixed latent factor models. The HMM generates a piece-wise constant state evolution process and the observations are produced from the state vectors by a mixture of factor analyzers observation process. This new switching specification provides an alternative, compact, model to handle intra-frame correlation and unobserved heterogeneity in financial data. For maximum likelihood estimation we have proposed an iterative approach based on the Expectation-Maximisation (EM) algorithm. Using a set of historical data, from the Tunisian foreign exchange market, the model parameters are estimated. Then, the fitted model combined with a modified Monte-Carlo simulation algorithm was used to predict the VaR of the Tunisian public debt portfolio. Through a backtesting procedure, we found that this new specification exhibits a good fit to the data, improves the accuracy of VaR predictions and can avoid serious violations when a financial crisis occurs.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":"1 1","pages":"241-255"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17535/crorr.2019.0021","citationCount":"3","resultStr":"{\"title\":\"Forecasting portfolio-Value-at-Risk with mixed factorial hidden Markov models\",\"authors\":\"Mohamed Saidane\",\"doi\":\"10.17535/crorr.2019.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the statistical modeling of the latent dependence and comovement structures of multivariate financial data using a new approach based on mixed factorial hidden Markov models, and their applications in Value-at-Risk (VaR) valuation. This approach combines hidden Markov Models (HMM) with mixed latent factor models. The HMM generates a piece-wise constant state evolution process and the observations are produced from the state vectors by a mixture of factor analyzers observation process. This new switching specification provides an alternative, compact, model to handle intra-frame correlation and unobserved heterogeneity in financial data. For maximum likelihood estimation we have proposed an iterative approach based on the Expectation-Maximisation (EM) algorithm. Using a set of historical data, from the Tunisian foreign exchange market, the model parameters are estimated. Then, the fitted model combined with a modified Monte-Carlo simulation algorithm was used to predict the VaR of the Tunisian public debt portfolio. Through a backtesting procedure, we found that this new specification exhibits a good fit to the data, improves the accuracy of VaR predictions and can avoid serious violations when a financial crisis occurs.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\"1 1\",\"pages\":\"241-255\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17535/crorr.2019.0021\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2019.0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2019.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
Forecasting portfolio-Value-at-Risk with mixed factorial hidden Markov models
This paper is concerned with the statistical modeling of the latent dependence and comovement structures of multivariate financial data using a new approach based on mixed factorial hidden Markov models, and their applications in Value-at-Risk (VaR) valuation. This approach combines hidden Markov Models (HMM) with mixed latent factor models. The HMM generates a piece-wise constant state evolution process and the observations are produced from the state vectors by a mixture of factor analyzers observation process. This new switching specification provides an alternative, compact, model to handle intra-frame correlation and unobserved heterogeneity in financial data. For maximum likelihood estimation we have proposed an iterative approach based on the Expectation-Maximisation (EM) algorithm. Using a set of historical data, from the Tunisian foreign exchange market, the model parameters are estimated. Then, the fitted model combined with a modified Monte-Carlo simulation algorithm was used to predict the VaR of the Tunisian public debt portfolio. Through a backtesting procedure, we found that this new specification exhibits a good fit to the data, improves the accuracy of VaR predictions and can avoid serious violations when a financial crisis occurs.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.