多维函数数据的鲁棒深度神经网络估计

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Shuoyang Wang, Guanqun Cao
{"title":"多维函数数据的鲁棒深度神经网络估计","authors":"Shuoyang Wang, Guanqun Cao","doi":"10.1214/22-ejs2093","DOIUrl":null,"url":null,"abstract":": In this paper, we propose a robust estimator for the location function from multi-dimensional functional data. The proposed estimators are based on the deep neural networks with ReLU activation function. At the meanwhile, the estimators are less susceptible to outlying observations and model-misspecification. For any multi-dimensional functional data, we provide the uniform convergence rates for the proposed robust deep neural networks estimators. Simulation studies illustrate the competitive performance of the robust deep neural network estimators on regular data and their superior performance on data that contain anomalies. The proposed method is also applied to analyze 2D and 3D images of patients with Alzheimer’s disease obtained from the Alzheimer Disease Neuroimaging Initiative database.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust deep neural network estimation for multi-dimensional functional data\",\"authors\":\"Shuoyang Wang, Guanqun Cao\",\"doi\":\"10.1214/22-ejs2093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we propose a robust estimator for the location function from multi-dimensional functional data. The proposed estimators are based on the deep neural networks with ReLU activation function. At the meanwhile, the estimators are less susceptible to outlying observations and model-misspecification. For any multi-dimensional functional data, we provide the uniform convergence rates for the proposed robust deep neural networks estimators. Simulation studies illustrate the competitive performance of the robust deep neural network estimators on regular data and their superior performance on data that contain anomalies. The proposed method is also applied to analyze 2D and 3D images of patients with Alzheimer’s disease obtained from the Alzheimer Disease Neuroimaging Initiative database.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejs2093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs2093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

:在本文中,我们从多维函数数据中提出了一个位置函数的鲁棒估计器。所提出的估计量基于具有ReLU激活函数的深度神经网络。同时,估计量不太容易受到外围观测和模型误判的影响。对于任何多维函数数据,我们为所提出的鲁棒深度神经网络估计器提供了一致的收敛速度。仿真研究表明了鲁棒深度神经网络估计器在规则数据上的竞争性能以及在包含异常的数据上的优越性能。所提出的方法还应用于分析从阿尔茨海默病神经成像倡议数据库中获得的阿尔茨海默病患者的2D和3D图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust deep neural network estimation for multi-dimensional functional data
: In this paper, we propose a robust estimator for the location function from multi-dimensional functional data. The proposed estimators are based on the deep neural networks with ReLU activation function. At the meanwhile, the estimators are less susceptible to outlying observations and model-misspecification. For any multi-dimensional functional data, we provide the uniform convergence rates for the proposed robust deep neural networks estimators. Simulation studies illustrate the competitive performance of the robust deep neural network estimators on regular data and their superior performance on data that contain anomalies. The proposed method is also applied to analyze 2D and 3D images of patients with Alzheimer’s disease obtained from the Alzheimer Disease Neuroimaging Initiative database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信