{"title":"超图霍夫曼界在相交族中的应用","authors":"N. Tokushige","doi":"10.5802/alco.222","DOIUrl":null,"url":null,"abstract":"Using the Filmus–Golubev–Lifshitz method [7] to bound the independence number of a hypergraph, we solve some problems concerning multiply intersecting families with biased measures. Among other results we obtain a stability result of a measure version of the Erdős– Ko–Rado theorem for multiply intersecting families.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of hypergraph Hoffman’s bound to intersecting families\",\"authors\":\"N. Tokushige\",\"doi\":\"10.5802/alco.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Filmus–Golubev–Lifshitz method [7] to bound the independence number of a hypergraph, we solve some problems concerning multiply intersecting families with biased measures. Among other results we obtain a stability result of a measure version of the Erdős– Ko–Rado theorem for multiply intersecting families.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Application of hypergraph Hoffman’s bound to intersecting families
Using the Filmus–Golubev–Lifshitz method [7] to bound the independence number of a hypergraph, we solve some problems concerning multiply intersecting families with biased measures. Among other results we obtain a stability result of a measure version of the Erdős– Ko–Rado theorem for multiply intersecting families.