二次型的解耦不等式

IF 2.3 1区 数学 Q1 MATHEMATICS
Shaoming Guo, Changkeun Oh, Ruixiang Zhang, Pavel Zorin-Kranich
{"title":"二次型的解耦不等式","authors":"Shaoming Guo, Changkeun Oh, Ruixiang Zhang, Pavel Zorin-Kranich","doi":"10.1215/00127094-2022-0033","DOIUrl":null,"url":null,"abstract":"We prove sharp $\\ell^q L^p$ decoupling inequalities for arbitrary tuples of quadratic forms. Our argument is based on scale-dependent Brascamp-Lieb inequalities.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Decoupling inequalities for quadratic forms\",\"authors\":\"Shaoming Guo, Changkeun Oh, Ruixiang Zhang, Pavel Zorin-Kranich\",\"doi\":\"10.1215/00127094-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove sharp $\\\\ell^q L^p$ decoupling inequalities for arbitrary tuples of quadratic forms. Our argument is based on scale-dependent Brascamp-Lieb inequalities.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

对于任意二次元组,我们证明了尖锐的$\ well ^q L^p$解耦不等式。我们的论点是基于尺度相关的布拉斯坎普-里布不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling inequalities for quadratic forms
We prove sharp $\ell^q L^p$ decoupling inequalities for arbitrary tuples of quadratic forms. Our argument is based on scale-dependent Brascamp-Lieb inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信