环面中与子群相交的变种的阿贝尔点

IF 0.3 4区 数学 Q4 MATHEMATICS
J. Mello
{"title":"环面中与子群相交的变种的阿贝尔点","authors":"J. Mello","doi":"10.5802/jtnb.1203","DOIUrl":null,"url":null,"abstract":"We show, under some natural conditions, that the set of abelian points on the non-anomalous dense subset of a closed irreducible subvariety $X$ intersected with the union of connected algebraic subgroups of codimension at least $\\dim X$ in a torus is finite, generalising results of Ostafe, Sha, Shparlinski and Zannier (2017). We also generalise their structure theorem for such sets when the algebraic subgroups are not necessarily connected, and obtain a related result in the context of curves and arithmetic dynamics.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On abelian points of varieties intersecting subgroups in a torus\",\"authors\":\"J. Mello\",\"doi\":\"10.5802/jtnb.1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show, under some natural conditions, that the set of abelian points on the non-anomalous dense subset of a closed irreducible subvariety $X$ intersected with the union of connected algebraic subgroups of codimension at least $\\\\dim X$ in a torus is finite, generalising results of Ostafe, Sha, Shparlinski and Zannier (2017). We also generalise their structure theorem for such sets when the algebraic subgroups are not necessarily connected, and obtain a related result in the context of curves and arithmetic dynamics.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1203\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1203","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在某些自然条件下,与环面中至少$\dim X$的连通代数子群并相交的闭不可约子簇$X$的非异常密集子集上的阿贝点集是有限的,这是Ostafe, Sha, Shparlinski和Zannier(2017)的推广结果。在代数子群不一定连通的情况下,我们也推广了这类集合的结构定理,并在曲线和算术动力学的背景下得到了相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On abelian points of varieties intersecting subgroups in a torus
We show, under some natural conditions, that the set of abelian points on the non-anomalous dense subset of a closed irreducible subvariety $X$ intersected with the union of connected algebraic subgroups of codimension at least $\dim X$ in a torus is finite, generalising results of Ostafe, Sha, Shparlinski and Zannier (2017). We also generalise their structure theorem for such sets when the algebraic subgroups are not necessarily connected, and obtain a related result in the context of curves and arithmetic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信