支持SDN的地理分布式流媒体分析资源配置框架

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
H. Mostafaei, Shafi Afridi
{"title":"支持SDN的地理分布式流媒体分析资源配置框架","authors":"H. Mostafaei, Shafi Afridi","doi":"10.1145/3571158","DOIUrl":null,"url":null,"abstract":"Geographically distributed (geo-distributed) datacenters for stream data processing typically comprise multiple edges and core datacenters connected through Wide-Area Network (WAN) with a master node responsible for allocating tasks to worker nodes. Since WAN links significantly impact the performance of distributed task execution, the existing task assignment approach is unsuitable for distributed stream data processing with low latency and high throughput demand. In this paper, we propose SAFA, a resource provisioning framework using the Software-Defined Networking (SDN) concept with an SDN controller responsible for monitoring the WAN, selecting an appropriate subset of worker nodes, and assigning tasks to the designated worker nodes. We implemented the data plane of the framework in P4 and the control plane components in Python. We tested the performance of the proposed system on Apache Spark, Apache Storm, and Apache Flink using the Yahoo! streaming benchmark on a set of custom topologies. The results of the experiments validate that the proposed approach is viable for distributed stream processing and confirm that it can improve at least 1.64× the processing time of incoming events of the current stream processing systems.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":" ","pages":"1 - 21"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDN-enabled Resource Provisioning Framework for Geo-Distributed Streaming Analytics\",\"authors\":\"H. Mostafaei, Shafi Afridi\",\"doi\":\"10.1145/3571158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geographically distributed (geo-distributed) datacenters for stream data processing typically comprise multiple edges and core datacenters connected through Wide-Area Network (WAN) with a master node responsible for allocating tasks to worker nodes. Since WAN links significantly impact the performance of distributed task execution, the existing task assignment approach is unsuitable for distributed stream data processing with low latency and high throughput demand. In this paper, we propose SAFA, a resource provisioning framework using the Software-Defined Networking (SDN) concept with an SDN controller responsible for monitoring the WAN, selecting an appropriate subset of worker nodes, and assigning tasks to the designated worker nodes. We implemented the data plane of the framework in P4 and the control plane components in Python. We tested the performance of the proposed system on Apache Spark, Apache Storm, and Apache Flink using the Yahoo! streaming benchmark on a set of custom topologies. The results of the experiments validate that the proposed approach is viable for distributed stream processing and confirm that it can improve at least 1.64× the processing time of incoming events of the current stream processing systems.\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\" \",\"pages\":\"1 - 21\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3571158\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3571158","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

用于流数据处理的地理分布(地理分布)数据中心通常包括通过广域网(WAN)连接的多个边缘和核心数据中心,其中主节点负责将任务分配给工作节点。由于广域网链路显著影响分布式任务执行的性能,现有的任务分配方法不适合于低延迟和高吞吐量需求的分布式流数据处理。在本文中,我们提出了SAFA,这是一个使用软件定义网络(SDN)概念的资源供应框架,SDN控制器负责监控WAN,选择适当的工作节点子集,并将任务分配给指定的工作节点。我们在P4中实现了框架的数据平面,在Python中实现了控制平面组件。我们使用Yahoo!一组自定义拓扑上的流式基准测试。实验结果验证了所提出的方法在分布式流处理中的可行性,并证实了该方法至少可以提高当前流处理系统对传入事件的处理时间1.64倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDN-enabled Resource Provisioning Framework for Geo-Distributed Streaming Analytics
Geographically distributed (geo-distributed) datacenters for stream data processing typically comprise multiple edges and core datacenters connected through Wide-Area Network (WAN) with a master node responsible for allocating tasks to worker nodes. Since WAN links significantly impact the performance of distributed task execution, the existing task assignment approach is unsuitable for distributed stream data processing with low latency and high throughput demand. In this paper, we propose SAFA, a resource provisioning framework using the Software-Defined Networking (SDN) concept with an SDN controller responsible for monitoring the WAN, selecting an appropriate subset of worker nodes, and assigning tasks to the designated worker nodes. We implemented the data plane of the framework in P4 and the control plane components in Python. We tested the performance of the proposed system on Apache Spark, Apache Storm, and Apache Flink using the Yahoo! streaming benchmark on a set of custom topologies. The results of the experiments validate that the proposed approach is viable for distributed stream processing and confirm that it can improve at least 1.64× the processing time of incoming events of the current stream processing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信