关于富士的平均哥德巴赫表示公式

IF 0.8 2区 数学 Q2 MATHEMATICS
D. Goldston, A. I. Suriajaya
{"title":"关于富士的平均哥德巴赫表示公式","authors":"D. Goldston, A. I. Suriajaya","doi":"10.1017/nmj.2022.44","DOIUrl":null,"url":null,"abstract":"Abstract Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"250 1","pages":"511 - 532"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ON AN AVERAGE GOLDBACH REPRESENTATION FORMULA OF FUJII\",\"authors\":\"D. Goldston, A. I. Suriajaya\",\"doi\":\"10.1017/nmj.2022.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"250 1\",\"pages\":\"511 - 532\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.44\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.44","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要Fujii得到了一个关于具有低阶项的Goldbach表示的平均数的公式,该低阶项表示为Riemann-zeta函数的零上的和和和一个较小的误差项。这假设了黎曼假说。我们得到了这一结果的一个无条件版本,并得到了在Riemann-zeta函数零点上的各种猜想的条件下的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON AN AVERAGE GOLDBACH REPRESENTATION FORMULA OF FUJII
Abstract Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信