B. Goud, D. Reddy, Srinivasa Rao, Zafar Hayat Khan
{"title":"热辐射和焦耳加热对磁流体力学卡森纳米流体通过非线性倾斜多孔拉伸片的化学反应的影响","authors":"B. Goud, D. Reddy, Srinivasa Rao, Zafar Hayat Khan","doi":"10.3329/JNAME.V17I2.49978","DOIUrl":null,"url":null,"abstract":"The present study explores the thermal and Joule heating effect of Casson nanofluid flow with chemical reaction over an inclined porous stretching surface. The results of heat source/sink, viscous dissipation, and suction are regarded. The new physical governing equations of partial differential flow equations are converted into nonlinear ordinary differential equations and are numerically resolved employing the implicit finite difference technique. The influence on velocity, temperature, and concentration fields of many flow variables are addressed. The numerical and graphical findings are defined for the numerous related attentiveness flow parameters. The empirical data reported are compared with the published outcomes.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet\",\"authors\":\"B. Goud, D. Reddy, Srinivasa Rao, Zafar Hayat Khan\",\"doi\":\"10.3329/JNAME.V17I2.49978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study explores the thermal and Joule heating effect of Casson nanofluid flow with chemical reaction over an inclined porous stretching surface. The results of heat source/sink, viscous dissipation, and suction are regarded. The new physical governing equations of partial differential flow equations are converted into nonlinear ordinary differential equations and are numerically resolved employing the implicit finite difference technique. The influence on velocity, temperature, and concentration fields of many flow variables are addressed. The numerical and graphical findings are defined for the numerous related attentiveness flow parameters. The empirical data reported are compared with the published outcomes.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V17I2.49978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.49978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet
The present study explores the thermal and Joule heating effect of Casson nanofluid flow with chemical reaction over an inclined porous stretching surface. The results of heat source/sink, viscous dissipation, and suction are regarded. The new physical governing equations of partial differential flow equations are converted into nonlinear ordinary differential equations and are numerically resolved employing the implicit finite difference technique. The influence on velocity, temperature, and concentration fields of many flow variables are addressed. The numerical and graphical findings are defined for the numerous related attentiveness flow parameters. The empirical data reported are compared with the published outcomes.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.