{"title":"Lévy矩阵的特征向量统计","authors":"A. Aggarwal, P. Lopatto, Jake Marcinek","doi":"10.1214/20-AOP1493","DOIUrl":null,"url":null,"abstract":"We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Eigenvector statistics of Lévy matrices\",\"authors\":\"A. Aggarwal, P. Lopatto, Jake Marcinek\",\"doi\":\"10.1214/20-AOP1493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-AOP1493\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOP1493","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.