OCT图像分类分割检测DME

Q2 Social Sciences
P. Mittal, C. Bhatnagar
{"title":"OCT图像分类分割检测DME","authors":"P. Mittal, C. Bhatnagar","doi":"10.14704/web/v19i1/web19043","DOIUrl":null,"url":null,"abstract":"Optical Coherence Tomography (OCT) is a developing medical scanning technique proposing non- protruding scanning with high resolution for biological tissues. It is extensively employed in optics to accomplish investigative scanning of the eye, especially the retinal layers. Various medical research works are conducted to evaluate the usage of Optical Coherence Tomography to detect diseases like DME. The current study provides an innovative, completely automated algorithm for disease detection such as DME through OCT scanning. We performed the classification and segmentation for the detection of DME. The algorithm used employed HOG descriptors as feature vectors for SVM based classifier. Cross-validation was performed on the SD-OCT data sets comprised of volumetric images obtained from 20 people. Out of 10 were normal, while 10 were patients of diabetic macular edema (DME). Our classifier effectively detected 100% of cases of DME while about 70% cases of healthy individuals. The development of such a notable technique is extremely important for detecting retinal diseases such as DME.","PeriodicalId":35441,"journal":{"name":"Webology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of DME by Classification and Segmentation Using OCT Images\",\"authors\":\"P. Mittal, C. Bhatnagar\",\"doi\":\"10.14704/web/v19i1/web19043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical Coherence Tomography (OCT) is a developing medical scanning technique proposing non- protruding scanning with high resolution for biological tissues. It is extensively employed in optics to accomplish investigative scanning of the eye, especially the retinal layers. Various medical research works are conducted to evaluate the usage of Optical Coherence Tomography to detect diseases like DME. The current study provides an innovative, completely automated algorithm for disease detection such as DME through OCT scanning. We performed the classification and segmentation for the detection of DME. The algorithm used employed HOG descriptors as feature vectors for SVM based classifier. Cross-validation was performed on the SD-OCT data sets comprised of volumetric images obtained from 20 people. Out of 10 were normal, while 10 were patients of diabetic macular edema (DME). Our classifier effectively detected 100% of cases of DME while about 70% cases of healthy individuals. The development of such a notable technique is extremely important for detecting retinal diseases such as DME.\",\"PeriodicalId\":35441,\"journal\":{\"name\":\"Webology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Webology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14704/web/v19i1/web19043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Webology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14704/web/v19i1/web19043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

光学相干断层扫描(OCT)是一种新兴的医学扫描技术,提出了对生物组织进行高分辨率的非突出扫描。它被广泛应用于光学,以完成眼睛的调查性扫描,特别是视网膜层。开展了各种医学研究工作,以评估光学相干断层扫描在检测DME等疾病中的应用。目前的研究提供了一种创新的、完全自动化的算法,用于通过OCT扫描检测DME等疾病。我们对二甲醚进行了分类和分割检测。该算法采用HOG描述符作为SVM分类器的特征向量。对20人的体积图像组成的SD-OCT数据集进行交叉验证。10例为正常,10例为糖尿病性黄斑水肿(DME)。我们的分类器有效地检测了100%的二甲醚病例,而健康个体的病例约为70%。这种引人注目的技术的发展对于检测二甲醚等视网膜疾病至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of DME by Classification and Segmentation Using OCT Images
Optical Coherence Tomography (OCT) is a developing medical scanning technique proposing non- protruding scanning with high resolution for biological tissues. It is extensively employed in optics to accomplish investigative scanning of the eye, especially the retinal layers. Various medical research works are conducted to evaluate the usage of Optical Coherence Tomography to detect diseases like DME. The current study provides an innovative, completely automated algorithm for disease detection such as DME through OCT scanning. We performed the classification and segmentation for the detection of DME. The algorithm used employed HOG descriptors as feature vectors for SVM based classifier. Cross-validation was performed on the SD-OCT data sets comprised of volumetric images obtained from 20 people. Out of 10 were normal, while 10 were patients of diabetic macular edema (DME). Our classifier effectively detected 100% of cases of DME while about 70% cases of healthy individuals. The development of such a notable technique is extremely important for detecting retinal diseases such as DME.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Webology
Webology Social Sciences-Library and Information Sciences
自引率
0.00%
发文量
374
审稿时长
10 weeks
期刊介绍: Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. Concerns include the production, gathering, recording, processing, storing, representing, sharing, transmitting, retrieving, distribution, and dissemination of information, as well as its social and cultural impacts. There is a strong emphasis on the Web and new information technologies. Special topic issues are also often seen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信