陈述式人工智能技术在电梯系统计算机自动化设计中的比较

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
G. Cicala, S. Demarchi, Marco Menapace, Leopoldo Annunziata, A. Tacchella
{"title":"陈述式人工智能技术在电梯系统计算机自动化设计中的比较","authors":"G. Cicala, S. Demarchi, Marco Menapace, Leopoldo Annunziata, A. Tacchella","doi":"10.3233/ia-210132","DOIUrl":null,"url":null,"abstract":"Like other custom-built machinery, elevators are charecterized by a design process which includes selection, sizing and placement of components to fit a given configuration, satisfy users’ requirements and adhere to stringent normative regulations. Unlike mass-produced items, the design process needs to be repeated almost from scratch each time a new configuration is considered. Since elevators are still designed mostly manually, project engineers must engage in time-consuming and error-prone activities over and over again, leaving little to be reused from one design to the next. Computer automated design can provide a cost-effective solution as it relieves the project engineer from such burdens. However, it introduces new challenges both in terms of efficiency — the search space for solutions grows exponentially in the number of component choices — and effectiveness — the perceived quality of the final design may not be as good as in the manual process. In this paper we compare three mainstream AI techniques that can provide problem-solving capabilities inside our tool LiftCreate for automated elevator design, namely Genetic Algorithms (GAs), Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). A special-purpose heuristic search technique embedded in LiftCreate provides us with a yardstick to evaluate the solutions obtained with GAs, CP and SMT and to assess their feasibility for practical applications.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"16 1","pages":"131-150"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of declarative AI techniques for computer automated design of elevator systems\",\"authors\":\"G. Cicala, S. Demarchi, Marco Menapace, Leopoldo Annunziata, A. Tacchella\",\"doi\":\"10.3233/ia-210132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like other custom-built machinery, elevators are charecterized by a design process which includes selection, sizing and placement of components to fit a given configuration, satisfy users’ requirements and adhere to stringent normative regulations. Unlike mass-produced items, the design process needs to be repeated almost from scratch each time a new configuration is considered. Since elevators are still designed mostly manually, project engineers must engage in time-consuming and error-prone activities over and over again, leaving little to be reused from one design to the next. Computer automated design can provide a cost-effective solution as it relieves the project engineer from such burdens. However, it introduces new challenges both in terms of efficiency — the search space for solutions grows exponentially in the number of component choices — and effectiveness — the perceived quality of the final design may not be as good as in the manual process. In this paper we compare three mainstream AI techniques that can provide problem-solving capabilities inside our tool LiftCreate for automated elevator design, namely Genetic Algorithms (GAs), Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). A special-purpose heuristic search technique embedded in LiftCreate provides us with a yardstick to evaluate the solutions obtained with GAs, CP and SMT and to assess their feasibility for practical applications.\",\"PeriodicalId\":42055,\"journal\":{\"name\":\"Intelligenza Artificiale\",\"volume\":\"16 1\",\"pages\":\"131-150\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligenza Artificiale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ia-210132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ia-210132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

像其他定制机械一样,电梯的特点是一个设计过程,包括选择、尺寸和部件的放置,以适应给定的配置,满足用户的要求,并遵守严格的规范规定。与批量生产的产品不同,每次考虑新的配置时,设计过程都需要从头开始重复。由于电梯大部分仍然是手工设计的,项目工程师必须一次又一次地从事耗时且容易出错的活动,从一个设计到下一个设计几乎没有什么可重用的。计算机自动化设计可以提供一种经济有效的解决方案,因为它减轻了项目工程师的负担。然而,它在效率(解决方案的搜索空间在组件选择数量上呈指数级增长)和有效性(最终设计的感知质量可能不如手工过程好)方面引入了新的挑战。在本文中,我们比较了三种主流的人工智能技术,它们可以在我们的工具LiftCreate中为自动电梯设计提供解决问题的能力,即遗传算法(GAs)、约束规划(CP)和可满足模理论(SMT)。LiftCreate中嵌入了一种特殊用途的启发式搜索技术,为我们提供了一个标准来评估用GAs、CP和SMT获得的解决方案,并评估它们在实际应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of declarative AI techniques for computer automated design of elevator systems
Like other custom-built machinery, elevators are charecterized by a design process which includes selection, sizing and placement of components to fit a given configuration, satisfy users’ requirements and adhere to stringent normative regulations. Unlike mass-produced items, the design process needs to be repeated almost from scratch each time a new configuration is considered. Since elevators are still designed mostly manually, project engineers must engage in time-consuming and error-prone activities over and over again, leaving little to be reused from one design to the next. Computer automated design can provide a cost-effective solution as it relieves the project engineer from such burdens. However, it introduces new challenges both in terms of efficiency — the search space for solutions grows exponentially in the number of component choices — and effectiveness — the perceived quality of the final design may not be as good as in the manual process. In this paper we compare three mainstream AI techniques that can provide problem-solving capabilities inside our tool LiftCreate for automated elevator design, namely Genetic Algorithms (GAs), Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). A special-purpose heuristic search technique embedded in LiftCreate provides us with a yardstick to evaluate the solutions obtained with GAs, CP and SMT and to assess their feasibility for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信