基于新线研究的双近端梯度法求解凸最小化问题及其在数据分类中的应用

Q1 Mathematics
S. Kesornprom, P. Cholamjiak
{"title":"基于新线研究的双近端梯度法求解凸最小化问题及其在数据分类中的应用","authors":"S. Kesornprom, P. Cholamjiak","doi":"10.53006/rna.1143531","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new proximal gradient method for a convex minimization problem in real Hilbert spaces. We suggest a new linesearch which does not require the condition of Lipschitz constant and improve conditions of inertial term which speed up performance of convergence. Moreover, we prove the weak convergence of the proposed method under some suitable conditions. The numerical implementations in data classification are reported to show its efficiency.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification\",\"authors\":\"S. Kesornprom, P. Cholamjiak\",\"doi\":\"10.53006/rna.1143531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new proximal gradient method for a convex minimization problem in real Hilbert spaces. We suggest a new linesearch which does not require the condition of Lipschitz constant and improve conditions of inertial term which speed up performance of convergence. Moreover, we prove the weak convergence of the proposed method under some suitable conditions. The numerical implementations in data classification are reported to show its efficiency.\",\"PeriodicalId\":36205,\"journal\":{\"name\":\"Results in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53006/rna.1143531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1143531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文针对实数Hilbert空间中的凸极小化问题,提出了一种新的近端梯度方法。我们提出了一种新的直线研究方法,它不需要Lipschitz常数的条件,并改进了惯性项的条件,从而加快了收敛性能。在一定的条件下,证明了该方法的弱收敛性。在数据分类中的数值实现表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification
In this paper, we propose a new proximal gradient method for a convex minimization problem in real Hilbert spaces. We suggest a new linesearch which does not require the condition of Lipschitz constant and improve conditions of inertial term which speed up performance of convergence. Moreover, we prove the weak convergence of the proposed method under some suitable conditions. The numerical implementations in data classification are reported to show its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信