非常仿射超曲面的镜像对称性

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Benjamin Gammage, V. Shende
{"title":"非常仿射超曲面的镜像对称性","authors":"Benjamin Gammage, V. Shende","doi":"10.4310/ACTA.2022.v229.n2.a2","DOIUrl":null,"url":null,"abstract":"We show that the category of coherent sheaves on the toric boundary divisor of a smooth quasiprojective DM toric stack is equivalent to the wrapped Fukaya category of a hypersurface in a complex torus. Hypersurfaces with every Newton polytope can be obtained. \nOur proof has the following ingredients. Using Mikhalkin-Viro patchworking, we compute the skeleton of the hypersurface. The result matches the [FLTZ] skeleton and is naturally realized as a Legendrian in the cosphere bundle of a torus. By [GPS1, GPS2, GPS3], we trade wrapped Fukaya categories for microlocal sheaf theory. By proving a new functoriality result for Bondal's coherent-constructible correspondence, we reduce the sheaf calculation to Kuwagaki's recent theorem on mirror symmetry for toric varieties.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Mirror symmetry for very affine hypersurfaces\",\"authors\":\"Benjamin Gammage, V. Shende\",\"doi\":\"10.4310/ACTA.2022.v229.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the category of coherent sheaves on the toric boundary divisor of a smooth quasiprojective DM toric stack is equivalent to the wrapped Fukaya category of a hypersurface in a complex torus. Hypersurfaces with every Newton polytope can be obtained. \\nOur proof has the following ingredients. Using Mikhalkin-Viro patchworking, we compute the skeleton of the hypersurface. The result matches the [FLTZ] skeleton and is naturally realized as a Legendrian in the cosphere bundle of a torus. By [GPS1, GPS2, GPS3], we trade wrapped Fukaya categories for microlocal sheaf theory. By proving a new functoriality result for Bondal's coherent-constructible correspondence, we reduce the sheaf calculation to Kuwagaki's recent theorem on mirror symmetry for toric varieties.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2022.v229.n2.a2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2022.v229.n2.a2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 27

摘要

我们证明了光滑拟投影DM复曲面堆栈的复曲面边界除数上的相干簇的范畴等价于复环面中超曲面的包裹Fukaya范畴。可以得到具有每个牛顿多面体的超曲面。我们的证据有以下成分。使用Mikhalkin-Viro拼接,我们计算了超曲面的骨架。结果与[FLTZ]骨架相匹配,并自然地被实现为环面共球束中的传奇人物。通过【GPS1,GPS2,GPS3】,我们用包裹的Fukaya范畴交换微局部sheaf理论。通过证明Bondal的相干可构造对应的一个新的函数性结果,我们将sheaf计算简化为Kuwagaki最近关于复曲面变体的镜像对称定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mirror symmetry for very affine hypersurfaces
We show that the category of coherent sheaves on the toric boundary divisor of a smooth quasiprojective DM toric stack is equivalent to the wrapped Fukaya category of a hypersurface in a complex torus. Hypersurfaces with every Newton polytope can be obtained. Our proof has the following ingredients. Using Mikhalkin-Viro patchworking, we compute the skeleton of the hypersurface. The result matches the [FLTZ] skeleton and is naturally realized as a Legendrian in the cosphere bundle of a torus. By [GPS1, GPS2, GPS3], we trade wrapped Fukaya categories for microlocal sheaf theory. By proving a new functoriality result for Bondal's coherent-constructible correspondence, we reduce the sheaf calculation to Kuwagaki's recent theorem on mirror symmetry for toric varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信