多方对话中的多语言共指解决

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Boyuan Zheng, Patrick Xia, M. Yarmohammadi, Benjamin Van Durme
{"title":"多方对话中的多语言共指解决","authors":"Boyuan Zheng, Patrick Xia, M. Yarmohammadi, Benjamin Van Durme","doi":"10.1162/tacl_a_00581","DOIUrl":null,"url":null,"abstract":"Abstract Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"922-940"},"PeriodicalIF":4.2000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilingual Coreference Resolution in Multiparty Dialogue\",\"authors\":\"Boyuan Zheng, Patrick Xia, M. Yarmohammadi, Benjamin Van Durme\",\"doi\":\"10.1162/tacl_a_00581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"11 1\",\"pages\":\"922-940\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00581\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00581","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的用于实体共同参考解析的多方对话数据集尚处于萌芽阶段,许多挑战尚未解决。我们创建了一个大规模的数据集,多语言多方核心(MMC),为这个任务基于电视成绩单。由于多种语言的高质量字幕的可用性,我们建议通过注释投影重用注释来创建其他语言(汉语和波斯语)的高质量共同参考分辨率数据。在黄金(英语)数据上,现成的模型在MMC上的表现相对较差,这表明MMC比先前的数据集具有更广泛的多方共同参考覆盖范围。在白银数据上,我们发现将其用于数据增强和从头开始训练都取得了成功,这有效地模拟了零射击跨语言设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilingual Coreference Resolution in Multiparty Dialogue
Abstract Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信