红阳猕猴桃对桔小实蝇幼虫摄食的转录组分析

IF 0.7 4区 农林科学 Q4 ENTOMOLOGY
Liao Guo, Zhi-xia Chen, Xinwu Zhao
{"title":"红阳猕猴桃对桔小实蝇幼虫摄食的转录组分析","authors":"Liao Guo, Zhi-xia Chen, Xinwu Zhao","doi":"10.18474/JES21-77","DOIUrl":null,"url":null,"abstract":"Abstract The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major pest of Hong Yang kiwifruit (Actinidia chinensis Planch cv. chinensis) grown in China. Our transcriptome analysis of the interaction between Hong Yang kiwifruit and B. dorsalis revealed numerous changes in gene expression level attributable to Oriental fruit fly feeding, resulting in the down-regulation of 112 genes and the up-regulation of 226 genes. Gene ontology analysis revealed that differential expression genes (DEGs) were mainly involved in biological processes (4,568; 56.28%), molecular function (2,297; 28.30%), and cellular components (1,251; 15.41%). By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 258 DEGs were assigned to 51 KEGG pathways belonging to five main categories: metabolism (239, 92.64%), genetic information processing (10, 3.88%), organismal systems (5, 1.94%), cellular processes (3, 1.16%), and environmental information processing (1, 0.39%). The numbers of DEGs up-regulated were much higher than those down-regulated. Expression of genes involved in the secondary metabolism was detected, and several key genes showed differential expression. Our results suggest that B. dorsalis induced defense response of Hong Yang kiwifruit, including hypersensitive response and immunity triggered by either pathogen/microbe-associated molecular patterns or immunity effectors. Metabolic process was also adjusted to adapt to these responses. Our results provide extensive transcriptome information for A. chinensis and valuable clues for elucidating the mechanism of interaction between Hong Yang kiwifruit and B. dorsalis, and will facilitate molecular breeding for Actinidia crop plants.","PeriodicalId":15765,"journal":{"name":"Journal of Entomological Science","volume":"57 1","pages":"488 - 501"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome Analysis of Hong Yang Kiwifruit in Response to Bactrocera dorsalis (Diptera: Tephritidae) Larval Feeding\",\"authors\":\"Liao Guo, Zhi-xia Chen, Xinwu Zhao\",\"doi\":\"10.18474/JES21-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major pest of Hong Yang kiwifruit (Actinidia chinensis Planch cv. chinensis) grown in China. Our transcriptome analysis of the interaction between Hong Yang kiwifruit and B. dorsalis revealed numerous changes in gene expression level attributable to Oriental fruit fly feeding, resulting in the down-regulation of 112 genes and the up-regulation of 226 genes. Gene ontology analysis revealed that differential expression genes (DEGs) were mainly involved in biological processes (4,568; 56.28%), molecular function (2,297; 28.30%), and cellular components (1,251; 15.41%). By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 258 DEGs were assigned to 51 KEGG pathways belonging to five main categories: metabolism (239, 92.64%), genetic information processing (10, 3.88%), organismal systems (5, 1.94%), cellular processes (3, 1.16%), and environmental information processing (1, 0.39%). The numbers of DEGs up-regulated were much higher than those down-regulated. Expression of genes involved in the secondary metabolism was detected, and several key genes showed differential expression. Our results suggest that B. dorsalis induced defense response of Hong Yang kiwifruit, including hypersensitive response and immunity triggered by either pathogen/microbe-associated molecular patterns or immunity effectors. Metabolic process was also adjusted to adapt to these responses. Our results provide extensive transcriptome information for A. chinensis and valuable clues for elucidating the mechanism of interaction between Hong Yang kiwifruit and B. dorsalis, and will facilitate molecular breeding for Actinidia crop plants.\",\"PeriodicalId\":15765,\"journal\":{\"name\":\"Journal of Entomological Science\",\"volume\":\"57 1\",\"pages\":\"488 - 501\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Entomological Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.18474/JES21-77\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Entomological Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.18474/JES21-77","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要东方果蝇是我国红杨猕猴桃的主要害虫。我们对红杨猕猴桃和B.dorsalis之间相互作用的转录组分析显示,东方果蝇取食导致基因表达水平发生了许多变化,导致112个基因下调,226个基因上调。基因本体论分析显示,差异表达基因主要参与生物过程(4568;56.28%)、分子功能(2297;28.30%)和细胞成分(1251;15.41%),258个DEG被分配到51个KEGG途径,分为5大类:代谢(23992.64%)、遗传信息处理(10.388%)、组织系统(5.194%)、细胞过程(3.16%)和环境信息处理(1.039%)。上调的DEG数量远高于下调的DEG数量。检测了参与二次代谢的基因的表达,几个关键基因表现出差异表达。我们的研究结果表明,B.dorsalis诱导了红杨猕猴桃的防御反应,包括由病原体/微生物相关分子模式或免疫效应物引发的超敏反应和免疫。代谢过程也被调整以适应这些反应。我们的研究结果为中国猕猴桃提供了广泛的转录组信息,为阐明红杨猕猴桃与桔梗相互作用的机制提供了有价值的线索,并将有助于猕猴桃作物的分子育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptome Analysis of Hong Yang Kiwifruit in Response to Bactrocera dorsalis (Diptera: Tephritidae) Larval Feeding
Abstract The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major pest of Hong Yang kiwifruit (Actinidia chinensis Planch cv. chinensis) grown in China. Our transcriptome analysis of the interaction between Hong Yang kiwifruit and B. dorsalis revealed numerous changes in gene expression level attributable to Oriental fruit fly feeding, resulting in the down-regulation of 112 genes and the up-regulation of 226 genes. Gene ontology analysis revealed that differential expression genes (DEGs) were mainly involved in biological processes (4,568; 56.28%), molecular function (2,297; 28.30%), and cellular components (1,251; 15.41%). By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 258 DEGs were assigned to 51 KEGG pathways belonging to five main categories: metabolism (239, 92.64%), genetic information processing (10, 3.88%), organismal systems (5, 1.94%), cellular processes (3, 1.16%), and environmental information processing (1, 0.39%). The numbers of DEGs up-regulated were much higher than those down-regulated. Expression of genes involved in the secondary metabolism was detected, and several key genes showed differential expression. Our results suggest that B. dorsalis induced defense response of Hong Yang kiwifruit, including hypersensitive response and immunity triggered by either pathogen/microbe-associated molecular patterns or immunity effectors. Metabolic process was also adjusted to adapt to these responses. Our results provide extensive transcriptome information for A. chinensis and valuable clues for elucidating the mechanism of interaction between Hong Yang kiwifruit and B. dorsalis, and will facilitate molecular breeding for Actinidia crop plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: The Journal of Entomological Science (ISSN 0749-8004) is a peer-reviewed, scholarly journal that is published quarterly (January, April, July, and October) under the auspices of the Georgia Entomological Society in concert with Allen Press (Lawrence, Kansas). Manuscripts deemed acceptable for publication in the Journal report original research with insects and related arthropods or literature reviews offering foundations to innovative directions in entomological research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信