Anshu Kumar Singh, S. Pandey, P. Vishwakarma, Raghvendra Pratap, Ranjana Verma, Anamika Pandey, Rajiv Giri, A. Srivastava
{"title":"可见光下增强光催化响应的无催化剂双相正交/六方氧化钨体系","authors":"Anshu Kumar Singh, S. Pandey, P. Vishwakarma, Raghvendra Pratap, Ranjana Verma, Anamika Pandey, Rajiv Giri, A. Srivastava","doi":"10.1093/oxfmat/itad009","DOIUrl":null,"url":null,"abstract":"\n These days, textile industries pose a more significant threat to surface water and groundwater sources directly or indirectly by discharging wastewater containing various dyes and organic pollutants to these water sources. The phase-junction-engineered heterogeneous photocatalysis carried out by visible-light-driven semiconductor photocatalysts is opening a new window for the degradation of environmental organic pollutants. In this work, we have reported a one-step bottom-up hydrothermal synthesis of biphasic tungsten oxide (o/h-WO3) and performed a photodegradation experiment under visible light irradiation for the efficient degradation of organic pollutants such as Methylene blue (MB) methyl violet (MV), respectively. The XRD, RAMAN, TEM, and UV-vis characterization techniques were used to investigate the structural, morphological, and optical properties of the as-synthesized o/h-WO3. Moreover, the low calculated band gap ( ̴ 2.8 eV) and the anionic nature of o/h-WO3 suggest it as an efficient visible-light-driven photocatalyst suitable for heterogeneous photocatalysis. The photodegradation experiment performed under visible light using o/h-WO3 photocatalyst showed better degradation efficiency of 71% and 89% for MB and MV, respectively, in 100 min. The dyes followed first-order kinetics, and their kinetic rate constants were calculated using the Langmuir-Hinshelwood model. Furthermore, the recyclability study of the photocatalyst was also performed and discussed the underlying mechanism for the photodegradation of the organic dyes.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst-Free Biphasic Orthorhombic/Hexagonal Tungsten Oxide System with Enhanced Photocatalytic Response Under Visible Light\",\"authors\":\"Anshu Kumar Singh, S. Pandey, P. Vishwakarma, Raghvendra Pratap, Ranjana Verma, Anamika Pandey, Rajiv Giri, A. Srivastava\",\"doi\":\"10.1093/oxfmat/itad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n These days, textile industries pose a more significant threat to surface water and groundwater sources directly or indirectly by discharging wastewater containing various dyes and organic pollutants to these water sources. The phase-junction-engineered heterogeneous photocatalysis carried out by visible-light-driven semiconductor photocatalysts is opening a new window for the degradation of environmental organic pollutants. In this work, we have reported a one-step bottom-up hydrothermal synthesis of biphasic tungsten oxide (o/h-WO3) and performed a photodegradation experiment under visible light irradiation for the efficient degradation of organic pollutants such as Methylene blue (MB) methyl violet (MV), respectively. The XRD, RAMAN, TEM, and UV-vis characterization techniques were used to investigate the structural, morphological, and optical properties of the as-synthesized o/h-WO3. Moreover, the low calculated band gap ( ̴ 2.8 eV) and the anionic nature of o/h-WO3 suggest it as an efficient visible-light-driven photocatalyst suitable for heterogeneous photocatalysis. The photodegradation experiment performed under visible light using o/h-WO3 photocatalyst showed better degradation efficiency of 71% and 89% for MB and MV, respectively, in 100 min. The dyes followed first-order kinetics, and their kinetic rate constants were calculated using the Langmuir-Hinshelwood model. Furthermore, the recyclability study of the photocatalyst was also performed and discussed the underlying mechanism for the photodegradation of the organic dyes.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itad009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itad009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Catalyst-Free Biphasic Orthorhombic/Hexagonal Tungsten Oxide System with Enhanced Photocatalytic Response Under Visible Light
These days, textile industries pose a more significant threat to surface water and groundwater sources directly or indirectly by discharging wastewater containing various dyes and organic pollutants to these water sources. The phase-junction-engineered heterogeneous photocatalysis carried out by visible-light-driven semiconductor photocatalysts is opening a new window for the degradation of environmental organic pollutants. In this work, we have reported a one-step bottom-up hydrothermal synthesis of biphasic tungsten oxide (o/h-WO3) and performed a photodegradation experiment under visible light irradiation for the efficient degradation of organic pollutants such as Methylene blue (MB) methyl violet (MV), respectively. The XRD, RAMAN, TEM, and UV-vis characterization techniques were used to investigate the structural, morphological, and optical properties of the as-synthesized o/h-WO3. Moreover, the low calculated band gap ( ̴ 2.8 eV) and the anionic nature of o/h-WO3 suggest it as an efficient visible-light-driven photocatalyst suitable for heterogeneous photocatalysis. The photodegradation experiment performed under visible light using o/h-WO3 photocatalyst showed better degradation efficiency of 71% and 89% for MB and MV, respectively, in 100 min. The dyes followed first-order kinetics, and their kinetic rate constants were calculated using the Langmuir-Hinshelwood model. Furthermore, the recyclability study of the photocatalyst was also performed and discussed the underlying mechanism for the photodegradation of the organic dyes.