M.J. Mohammad Fikry, Shinji Ogihara, Vladimir Vinogradov
{"title":"基体开裂对玻璃钢复合材料力学性能的影响","authors":"M.J. Mohammad Fikry, Shinji Ogihara, Vladimir Vinogradov","doi":"10.1186/s40759-018-0036-6","DOIUrl":null,"url":null,"abstract":"<p>Fiber Reinforced Polymer (FRP) laminates have properties, which are highly dependent on the ply fiber orientations and which can be designed for optimum laminate performance. The purpose of this study is to investigate the effect of matrix cracking on the mechanical properties of FRP laminates with various off-axis angles, and to provide a critical test for an analytical solution using variational stress analysis.</p><p>Carbon and glass fiber reinforced polymer laminates (CFRP and GFRP) are tested. FRP prepregs are cured by using autoclave method to form laminates with layups [<i>θ</i><sub>m</sub>/ φ<sub>n</sub>]<sub>s</sub>. The laminates are then loaded monotonically and cyclically to obtain their mechanical properties and the effect of matrix cracks on the properties. Some of the effects include reduction of laminates’ stiffness and residual strains after unloading. In order to obtain higher crack densities in specimens, artificial cracks method was introduced in this study, where notches were made at the edges of some specimens before tested in tension. Cracks observation for CFRP laminates is done by using the X-ray technique, while for GFRP laminates a DSLR camera is used.</p><p>The measured stiffness reduction as a function of the crack density is compared to an analytical prediction for cracked angle-ply laminates based on a variational stress analysis. The experimental results for stiffness reduction agree well with the analytical results.</p><p>Understanding the behavior of damaged laminates with simple configurations, as performed in this study, is of high importance for prediction of damage effects on laminates with more complex configuration, e.g. with quasi-isotropic layups.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"4 1","pages":""},"PeriodicalIF":4.0300,"publicationDate":"2018-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-018-0036-6","citationCount":"24","resultStr":"{\"title\":\"The effect of matrix cracking on mechanical properties in FRP laminates\",\"authors\":\"M.J. Mohammad Fikry, Shinji Ogihara, Vladimir Vinogradov\",\"doi\":\"10.1186/s40759-018-0036-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fiber Reinforced Polymer (FRP) laminates have properties, which are highly dependent on the ply fiber orientations and which can be designed for optimum laminate performance. The purpose of this study is to investigate the effect of matrix cracking on the mechanical properties of FRP laminates with various off-axis angles, and to provide a critical test for an analytical solution using variational stress analysis.</p><p>Carbon and glass fiber reinforced polymer laminates (CFRP and GFRP) are tested. FRP prepregs are cured by using autoclave method to form laminates with layups [<i>θ</i><sub>m</sub>/ φ<sub>n</sub>]<sub>s</sub>. The laminates are then loaded monotonically and cyclically to obtain their mechanical properties and the effect of matrix cracks on the properties. Some of the effects include reduction of laminates’ stiffness and residual strains after unloading. In order to obtain higher crack densities in specimens, artificial cracks method was introduced in this study, where notches were made at the edges of some specimens before tested in tension. Cracks observation for CFRP laminates is done by using the X-ray technique, while for GFRP laminates a DSLR camera is used.</p><p>The measured stiffness reduction as a function of the crack density is compared to an analytical prediction for cracked angle-ply laminates based on a variational stress analysis. The experimental results for stiffness reduction agree well with the analytical results.</p><p>Understanding the behavior of damaged laminates with simple configurations, as performed in this study, is of high importance for prediction of damage effects on laminates with more complex configuration, e.g. with quasi-isotropic layups.</p>\",\"PeriodicalId\":696,\"journal\":{\"name\":\"Mechanics of Advanced Materials and Modern Processes\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0300,\"publicationDate\":\"2018-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40759-018-0036-6\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Advanced Materials and Modern Processes\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40759-018-0036-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Advanced Materials and Modern Processes","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40759-018-0036-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of matrix cracking on mechanical properties in FRP laminates
Fiber Reinforced Polymer (FRP) laminates have properties, which are highly dependent on the ply fiber orientations and which can be designed for optimum laminate performance. The purpose of this study is to investigate the effect of matrix cracking on the mechanical properties of FRP laminates with various off-axis angles, and to provide a critical test for an analytical solution using variational stress analysis.
Carbon and glass fiber reinforced polymer laminates (CFRP and GFRP) are tested. FRP prepregs are cured by using autoclave method to form laminates with layups [θm/ φn]s. The laminates are then loaded monotonically and cyclically to obtain their mechanical properties and the effect of matrix cracks on the properties. Some of the effects include reduction of laminates’ stiffness and residual strains after unloading. In order to obtain higher crack densities in specimens, artificial cracks method was introduced in this study, where notches were made at the edges of some specimens before tested in tension. Cracks observation for CFRP laminates is done by using the X-ray technique, while for GFRP laminates a DSLR camera is used.
The measured stiffness reduction as a function of the crack density is compared to an analytical prediction for cracked angle-ply laminates based on a variational stress analysis. The experimental results for stiffness reduction agree well with the analytical results.
Understanding the behavior of damaged laminates with simple configurations, as performed in this study, is of high importance for prediction of damage effects on laminates with more complex configuration, e.g. with quasi-isotropic layups.