L. Morales-Marín, M. Carr, A. Sadeghian, K. Lindenschmidt
{"title":"气候变化对大型多功能水库迪芬贝克湖热分层的影响","authors":"L. Morales-Marín, M. Carr, A. Sadeghian, K. Lindenschmidt","doi":"10.1080/07011784.2020.1854120","DOIUrl":null,"url":null,"abstract":"Abstract Large multi-purpose reservoirs serve not only to generate hydropower but to supply water for agricultural irrigation, animal and human consumption and to provide flood control. One of the key factors affecting physical functioning and deteriorating aquatic ecosystems in reservoirs is climate change. For instance, increases in water temperature accelerate chemical reaction rates, decomposition rates and oxygen demand at the water-sediment interface. Earlier thermal stratification onset, and longer and more intense reservoir thermal stratification are all consequences of global warming. Such disruptions in thermal stratification have been associated with reductions in hypolimnion dissolved oxygen, increasing anoxia events and enhancing reservoir eutrophication. In this research paper, we implement the 2 D hydrodynamics and water quality model, CE-QUAL-W2, to investigate the effects of climate change and streamflow scenarios on the thermal structure of Lake Diefenbaker, a large, multipurpose reservoir, located in Saskatchewan, Canada. Model results indicate that meteorological variability will dictate a nonlinear increase in reservoir water temperature in the coming decades, where larger increases in water temperature will occur during summer and fall in the upper layers. Also, decreases in reservoir streamflows will reduce water temperature at intermediate layers during summer and fall. Our model can be used as a tool to mitigate and manage the effects of climate change on the reservoir water quality.","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"46 1","pages":"1 - 16"},"PeriodicalIF":1.7000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2020.1854120","citationCount":"7","resultStr":"{\"title\":\"Climate change effects on the thermal stratification of Lake Diefenbaker, a large multi-purpose reservoir\",\"authors\":\"L. Morales-Marín, M. Carr, A. Sadeghian, K. Lindenschmidt\",\"doi\":\"10.1080/07011784.2020.1854120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Large multi-purpose reservoirs serve not only to generate hydropower but to supply water for agricultural irrigation, animal and human consumption and to provide flood control. One of the key factors affecting physical functioning and deteriorating aquatic ecosystems in reservoirs is climate change. For instance, increases in water temperature accelerate chemical reaction rates, decomposition rates and oxygen demand at the water-sediment interface. Earlier thermal stratification onset, and longer and more intense reservoir thermal stratification are all consequences of global warming. Such disruptions in thermal stratification have been associated with reductions in hypolimnion dissolved oxygen, increasing anoxia events and enhancing reservoir eutrophication. In this research paper, we implement the 2 D hydrodynamics and water quality model, CE-QUAL-W2, to investigate the effects of climate change and streamflow scenarios on the thermal structure of Lake Diefenbaker, a large, multipurpose reservoir, located in Saskatchewan, Canada. Model results indicate that meteorological variability will dictate a nonlinear increase in reservoir water temperature in the coming decades, where larger increases in water temperature will occur during summer and fall in the upper layers. Also, decreases in reservoir streamflows will reduce water temperature at intermediate layers during summer and fall. Our model can be used as a tool to mitigate and manage the effects of climate change on the reservoir water quality.\",\"PeriodicalId\":55278,\"journal\":{\"name\":\"Canadian Water Resources Journal\",\"volume\":\"46 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2020.1854120\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Water Resources Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2020.1854120\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2020.1854120","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Climate change effects on the thermal stratification of Lake Diefenbaker, a large multi-purpose reservoir
Abstract Large multi-purpose reservoirs serve not only to generate hydropower but to supply water for agricultural irrigation, animal and human consumption and to provide flood control. One of the key factors affecting physical functioning and deteriorating aquatic ecosystems in reservoirs is climate change. For instance, increases in water temperature accelerate chemical reaction rates, decomposition rates and oxygen demand at the water-sediment interface. Earlier thermal stratification onset, and longer and more intense reservoir thermal stratification are all consequences of global warming. Such disruptions in thermal stratification have been associated with reductions in hypolimnion dissolved oxygen, increasing anoxia events and enhancing reservoir eutrophication. In this research paper, we implement the 2 D hydrodynamics and water quality model, CE-QUAL-W2, to investigate the effects of climate change and streamflow scenarios on the thermal structure of Lake Diefenbaker, a large, multipurpose reservoir, located in Saskatchewan, Canada. Model results indicate that meteorological variability will dictate a nonlinear increase in reservoir water temperature in the coming decades, where larger increases in water temperature will occur during summer and fall in the upper layers. Also, decreases in reservoir streamflows will reduce water temperature at intermediate layers during summer and fall. Our model can be used as a tool to mitigate and manage the effects of climate change on the reservoir water quality.
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.