温带森林中不同树种被砍伐的原木及其周围土壤的二氧化碳排放

IF 1.7 3区 农林科学 Q2 FORESTRY
Ewa Błoska, Wojciech Piaszczyk, J. Lasota
{"title":"温带森林中不同树种被砍伐的原木及其周围土壤的二氧化碳排放","authors":"Ewa Błoska, Wojciech Piaszczyk, J. Lasota","doi":"10.15287/afr.2022.2386","DOIUrl":null,"url":null,"abstract":"The decomposition of deadwood plays a very important role in the functioning of the forest ecosystem. The present study was conducted with the objectives to: (1) determine the amount of deadwood respiration depending on species and degree of decomposition; (2) determine the extent of the impact of decomposing wood on the amount of respiration in surrounding soil; (3) find a relationship between the amount of respiration and the chemical fractional composition of soil organic matter. Our research has shown that respiration of decaying wood samples was 2-3 times lower compared to soil, regardless of the type of wood and the degree of wood decomposition. The conducted analyses confirmed the influence of the species of wood and the degree of decomposition on the respiration rate in wood samples. More decomposed wood (4th and 5th degree of decomposition) releases more CO2 compared to less decomposed wood and the highest CO2 emissions were recorded for aspen and alder wood. Better understanding of the mechanisms and factors affecting CO2 emissions in forest ecosystem can help reduce climate change.","PeriodicalId":48954,"journal":{"name":"Annals of Forest Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Emissions of CO2 from downed logs of different species and the surrounding soil in temperate forest\",\"authors\":\"Ewa Błoska, Wojciech Piaszczyk, J. Lasota\",\"doi\":\"10.15287/afr.2022.2386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decomposition of deadwood plays a very important role in the functioning of the forest ecosystem. The present study was conducted with the objectives to: (1) determine the amount of deadwood respiration depending on species and degree of decomposition; (2) determine the extent of the impact of decomposing wood on the amount of respiration in surrounding soil; (3) find a relationship between the amount of respiration and the chemical fractional composition of soil organic matter. Our research has shown that respiration of decaying wood samples was 2-3 times lower compared to soil, regardless of the type of wood and the degree of wood decomposition. The conducted analyses confirmed the influence of the species of wood and the degree of decomposition on the respiration rate in wood samples. More decomposed wood (4th and 5th degree of decomposition) releases more CO2 compared to less decomposed wood and the highest CO2 emissions were recorded for aspen and alder wood. Better understanding of the mechanisms and factors affecting CO2 emissions in forest ecosystem can help reduce climate change.\",\"PeriodicalId\":48954,\"journal\":{\"name\":\"Annals of Forest Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15287/afr.2022.2386\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15287/afr.2022.2386","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

摘要

枯木的分解在森林生态系统的功能中起着非常重要的作用。本研究的目的是:(1)根据物种和分解程度确定枯木的呼吸量;(2) 确定木材分解对周围土壤呼吸量的影响程度;(3) 发现呼吸量与土壤有机质化学组成之间的关系。我们的研究表明,无论木材类型和木材分解程度如何,腐朽木材样品的呼吸作用都比土壤低2-3倍。所进行的分析证实了木材种类和分解程度对木材样品呼吸速率的影响。与分解程度较低的木材相比,分解程度较高的木材(4度和5度分解)释放出更多的二氧化碳,白杨和赤杨木材的二氧化碳排放量最高。更好地了解森林生态系统中影响二氧化碳排放的机制和因素有助于减少气候变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emissions of CO2 from downed logs of different species and the surrounding soil in temperate forest
The decomposition of deadwood plays a very important role in the functioning of the forest ecosystem. The present study was conducted with the objectives to: (1) determine the amount of deadwood respiration depending on species and degree of decomposition; (2) determine the extent of the impact of decomposing wood on the amount of respiration in surrounding soil; (3) find a relationship between the amount of respiration and the chemical fractional composition of soil organic matter. Our research has shown that respiration of decaying wood samples was 2-3 times lower compared to soil, regardless of the type of wood and the degree of wood decomposition. The conducted analyses confirmed the influence of the species of wood and the degree of decomposition on the respiration rate in wood samples. More decomposed wood (4th and 5th degree of decomposition) releases more CO2 compared to less decomposed wood and the highest CO2 emissions were recorded for aspen and alder wood. Better understanding of the mechanisms and factors affecting CO2 emissions in forest ecosystem can help reduce climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
11.10%
发文量
11
审稿时长
12 weeks
期刊介绍: Annals of Forest Research is a semestrial open access journal, which publishes research articles, research notes and critical review papers, exclusively in English, on topics dealing with forestry and environmental sciences. The journal promotes high scientific level articles, by following international editorial conventions and by applying a peer-review selection process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信