Lie型例外群的极大值< 0.05𝑆𝐿2 >子群

IF 2 4区 数学 Q1 MATHEMATICS
David A. Craven
{"title":"Lie型例外群的极大值< 0.05𝑆𝐿2 >子群","authors":"David A. Craven","doi":"10.1090/memo/1355","DOIUrl":null,"url":null,"abstract":"<p>We study embeddings of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>a</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_2(p^a)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> into exceptional groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis p Superscript b Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>b</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G(p^b)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G equals upper F 4 comma upper E 6 comma squared upper E 6 comma upper E 7\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>7</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G=F_4,E_6,{}^2\\!E_6,E_7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> a prime with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a comma b\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a,b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> positive integers. With a few possible exceptions, we prove that any almost simple group with socle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>a</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_2(p^a)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, that is maximal inside an almost simple exceptional group of Lie type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">F_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 6\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"squared upper E 6\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{}^2\\!E_6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 7\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> inside the algebraic group.</p>\n\n<p>Together with a recent result of Burness and Testerman for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the Coxeter number plus one, this proves that all maximal subgroups with socle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>a</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_2(p^a)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> inside these finite almost simple groups are known, with three possible exceptions (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript a Baseline equals 7 comma 8 comma 25\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>a</mml:mi>\n </mml:msup>\n <mml:mo>=</mml:mo>\n <mml:mn>7</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>8</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>25</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p^a=7,8,25</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 7\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>).</p>\n\n<p>In the three remaining cases we provide considerable information about a potential maximal subgroup.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Maximal 𝑃𝑆𝐿₂ Subgroups of Exceptional Groups of Lie Type\",\"authors\":\"David A. Craven\",\"doi\":\"10.1090/memo/1355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study embeddings of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>a</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_2(p^a)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> into exceptional groups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G left-parenthesis p Superscript b Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>b</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G(p^b)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G equals upper F 4 comma upper E 6 comma squared upper E 6 comma upper E 7\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>F</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G=F_4,E_6,{}^2\\\\!E_6,E_7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> a prime with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a comma b\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a,b</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> positive integers. With a few possible exceptions, we prove that any almost simple group with socle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>a</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_2(p^a)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, that is maximal inside an almost simple exceptional group of Lie type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>F</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 6\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"squared upper E 6\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mspace width=\\\"negativethinmathspace\\\" />\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{}^2\\\\!E_6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 7\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> inside the algebraic group.</p>\\n\\n<p>Together with a recent result of Burness and Testerman for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the Coxeter number plus one, this proves that all maximal subgroups with socle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 2 Baseline left-parenthesis p Superscript a Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>a</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_2(p^a)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> inside these finite almost simple groups are known, with three possible exceptions (<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Superscript a Baseline equals 7 comma 8 comma 25\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi>a</mml:mi>\\n </mml:msup>\\n <mml:mo>=</mml:mo>\\n <mml:mn>7</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>8</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>25</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p^a=7,8,25</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 7\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>).</p>\\n\\n<p>In the three remaining cases we provide considerable information about a potential maximal subgroup.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1355\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1355","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了在G = f4, e6, 2,e6时,P s2 (p2a) \ mathm {PSL}_2(P ^a)在例外群G(p2b) G(P ^b)中的嵌入。E 7 g = f_4, e_6,{}²\!E_6 E_7和p p a '和a b a b正整数。除了一些可能的例外,我们证明了任何具有集合pssl 2(P a) \ mathm {PSL}_2(P ^a)的几乎简单群,在Lie型的几乎简单例外群f4f_4, e6e_6, 2e6 {}^2\!E_6和E_7 E_7,是代数群内对应的a1a_1型最大闭子群的Frobenius映射下的不动点。结合Burness和Testerman关于p p (Coxeter数+ 1)的最新结果,证明了在这些有限几乎单群中,除三种可能的例外(p a = 7,8,25p ^a=7,8,25对于e7 E_7)。在剩下的三种情况中,我们提供了关于潜在最大子群的大量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal 𝑃𝑆𝐿₂ Subgroups of Exceptional Groups of Lie Type

We study embeddings of P S L 2 ( p a ) \mathrm {PSL}_2(p^a) into exceptional groups G ( p b ) G(p^b) for G = F 4 , E 6 , 2 E 6 , E 7 G=F_4,E_6,{}^2\!E_6,E_7 , and p p a prime with a , b a,b positive integers. With a few possible exceptions, we prove that any almost simple group with socle P S L 2 ( p a ) \mathrm {PSL}_2(p^a) , that is maximal inside an almost simple exceptional group of Lie type F 4 F_4 , E 6 E_6 , 2 E 6 {}^2\!E_6 and E 7 E_7 , is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type A 1 A_1 inside the algebraic group.

Together with a recent result of Burness and Testerman for p p the Coxeter number plus one, this proves that all maximal subgroups with socle P S L 2 ( p a ) \mathrm {PSL}_2(p^a) inside these finite almost simple groups are known, with three possible exceptions ( p a = 7 , 8 , 25 p^a=7,8,25 for E 7 E_7 ).

In the three remaining cases we provide considerable information about a potential maximal subgroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信