{"title":"联合离散和连续矩阵分布建模","authors":"Martin Bladt, Clara Brimnes Gardner","doi":"10.1080/15326349.2023.2185257","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a bivariate distribution on $\\mathbb{R}_{+} \\times \\mathbb{N}$ arising from a single underlying Markov jump process. The marginal distributions are phase-type and discrete phase-type distributed, respectively, which allow for flexible behavior for modeling purposes. We show that the distribution is dense in the class of distributions on $\\mathbb{R}_{+} \\times \\mathbb{N}$ and derive some of its main properties, all explicit in terms of matrix calculus. Furthermore, we develop an effective EM algorithm for the statistical estimation of the distribution parameters. In the last part of the paper, we apply our methodology to an insurance dataset, where we model the number of claims and the mean claim sizes of policyholders, which is seen to perform favorably. An additional consequence of the latter analysis is that the total loss size in the entire portfolio is captured substantially better than with independent phase-type models.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint discrete and continuous matrix distribution modeling\",\"authors\":\"Martin Bladt, Clara Brimnes Gardner\",\"doi\":\"10.1080/15326349.2023.2185257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a bivariate distribution on $\\\\mathbb{R}_{+} \\\\times \\\\mathbb{N}$ arising from a single underlying Markov jump process. The marginal distributions are phase-type and discrete phase-type distributed, respectively, which allow for flexible behavior for modeling purposes. We show that the distribution is dense in the class of distributions on $\\\\mathbb{R}_{+} \\\\times \\\\mathbb{N}$ and derive some of its main properties, all explicit in terms of matrix calculus. Furthermore, we develop an effective EM algorithm for the statistical estimation of the distribution parameters. In the last part of the paper, we apply our methodology to an insurance dataset, where we model the number of claims and the mean claim sizes of policyholders, which is seen to perform favorably. An additional consequence of the latter analysis is that the total loss size in the entire portfolio is captured substantially better than with independent phase-type models.\",\"PeriodicalId\":21970,\"journal\":{\"name\":\"Stochastic Models\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2023.2185257\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2023.2185257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Joint discrete and continuous matrix distribution modeling
In this paper we introduce a bivariate distribution on $\mathbb{R}_{+} \times \mathbb{N}$ arising from a single underlying Markov jump process. The marginal distributions are phase-type and discrete phase-type distributed, respectively, which allow for flexible behavior for modeling purposes. We show that the distribution is dense in the class of distributions on $\mathbb{R}_{+} \times \mathbb{N}$ and derive some of its main properties, all explicit in terms of matrix calculus. Furthermore, we develop an effective EM algorithm for the statistical estimation of the distribution parameters. In the last part of the paper, we apply our methodology to an insurance dataset, where we model the number of claims and the mean claim sizes of policyholders, which is seen to perform favorably. An additional consequence of the latter analysis is that the total loss size in the entire portfolio is captured substantially better than with independent phase-type models.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.