{"title":"第二个非平凡Neumann特征值的最大化","authors":"D. Bucur, A. Henrot","doi":"10.4310/ACTA.2019.V222.N2.A2","DOIUrl":null,"url":null,"abstract":"In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Maximization of the second non-trivial Neumann eigenvalue\",\"authors\":\"D. Bucur, A. Henrot\",\"doi\":\"10.4310/ACTA.2019.V222.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\\\\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2018-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2019.V222.N2.A2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2019.V222.N2.A2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Maximization of the second non-trivial Neumann eigenvalue
In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.