第二个非平凡Neumann特征值的最大化

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
D. Bucur, A. Henrot
{"title":"第二个非平凡Neumann特征值的最大化","authors":"D. Bucur, A. Henrot","doi":"10.4310/ACTA.2019.V222.N2.A2","DOIUrl":null,"url":null,"abstract":"In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Maximization of the second non-trivial Neumann eigenvalue\",\"authors\":\"D. Bucur, A. Henrot\",\"doi\":\"10.4310/ACTA.2019.V222.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\\\\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2018-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2019.V222.N2.A2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2019.V222.N2.A2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 30

摘要

本文证明了在给定测度为m的rn光滑域上拉普拉斯算子的第二(非平凡)Neumann特征值在两个测度为m2的不相交球的并集上达到最大值。因此,诺伊曼特征值的P{\'o}lya猜想对第二个特征值和任意域都成立。此外,我们还证明了在非光滑域和非光滑密度的情况下,相同不等式的松弛形式成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of the second non-trivial Neumann eigenvalue
In this paper we prove that the second (non-trivial) Neumann eigenvalue of the Laplace operator on smooth domains of R N with prescribed measure m attains its maximum on the union of two disjoint balls of measure m 2. As a consequence, the P{\'o}lya conjecture for the Neumann eigenvalues holds for the second eigenvalue and for arbitrary domains. We moreover prove that a relaxed form of the same inequality holds in the context of non-smooth domains and densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信