{"title":"氙气麻醉中动态通气参数的观察研究","authors":"Bazin Je","doi":"10.26420/AUSTINJANESTHESIAANDANALGESIA.2021.1098","DOIUrl":null,"url":null,"abstract":"Background: The aim of this study was to observe dynamic pressure and flow measurements during the breathing cycle with different concentrations of xenon in patients without pulmonary disease to provide a better understanding of the mechanical-physiological effects of gas mixtures for anesthesia and other potential applications. Ventilation and respiratory data monitoring of flow rate, pressure at the Y-piece of the ventilator circuit, inhaled volume, and concentration of oxygen, xenon, and carbon dioxide for three concentrations of xenon (0, 30, and 60%) were recorded on the anesthetic ventilator station and downloaded to a portable computer. Main Findings: The overall effects of gas concentration are compared in the superimposed flow and pressure curves recorded from the ventilator. Airway resistance increases with xenon concentration for both inspiration (p=0.0028) and expiration (p=0.0007) as expected. The compliance increased with increasing xenon concentration, but only to statistical significance between 100% oxygen and 60% xenon (p=0.0344). The percentage of pressure drop due to the breathing circuit were about 70% for all the groups (no differences statistically, p=0.8161). Conclusions: The results show that the dominant source of the pressure loss is from the breathing circuit compared to the respiratory tract in patients without respiratory disease during inspiration.","PeriodicalId":92989,"journal":{"name":"Austin journal of anesthesia and analgesia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational Study of Dynamic Ventilation Parameters during Xenon Anesthesia\",\"authors\":\"Bazin Je\",\"doi\":\"10.26420/AUSTINJANESTHESIAANDANALGESIA.2021.1098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The aim of this study was to observe dynamic pressure and flow measurements during the breathing cycle with different concentrations of xenon in patients without pulmonary disease to provide a better understanding of the mechanical-physiological effects of gas mixtures for anesthesia and other potential applications. Ventilation and respiratory data monitoring of flow rate, pressure at the Y-piece of the ventilator circuit, inhaled volume, and concentration of oxygen, xenon, and carbon dioxide for three concentrations of xenon (0, 30, and 60%) were recorded on the anesthetic ventilator station and downloaded to a portable computer. Main Findings: The overall effects of gas concentration are compared in the superimposed flow and pressure curves recorded from the ventilator. Airway resistance increases with xenon concentration for both inspiration (p=0.0028) and expiration (p=0.0007) as expected. The compliance increased with increasing xenon concentration, but only to statistical significance between 100% oxygen and 60% xenon (p=0.0344). The percentage of pressure drop due to the breathing circuit were about 70% for all the groups (no differences statistically, p=0.8161). Conclusions: The results show that the dominant source of the pressure loss is from the breathing circuit compared to the respiratory tract in patients without respiratory disease during inspiration.\",\"PeriodicalId\":92989,\"journal\":{\"name\":\"Austin journal of anesthesia and analgesia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austin journal of anesthesia and analgesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26420/AUSTINJANESTHESIAANDANALGESIA.2021.1098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austin journal of anesthesia and analgesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/AUSTINJANESTHESIAANDANALGESIA.2021.1098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observational Study of Dynamic Ventilation Parameters during Xenon Anesthesia
Background: The aim of this study was to observe dynamic pressure and flow measurements during the breathing cycle with different concentrations of xenon in patients without pulmonary disease to provide a better understanding of the mechanical-physiological effects of gas mixtures for anesthesia and other potential applications. Ventilation and respiratory data monitoring of flow rate, pressure at the Y-piece of the ventilator circuit, inhaled volume, and concentration of oxygen, xenon, and carbon dioxide for three concentrations of xenon (0, 30, and 60%) were recorded on the anesthetic ventilator station and downloaded to a portable computer. Main Findings: The overall effects of gas concentration are compared in the superimposed flow and pressure curves recorded from the ventilator. Airway resistance increases with xenon concentration for both inspiration (p=0.0028) and expiration (p=0.0007) as expected. The compliance increased with increasing xenon concentration, but only to statistical significance between 100% oxygen and 60% xenon (p=0.0344). The percentage of pressure drop due to the breathing circuit were about 70% for all the groups (no differences statistically, p=0.8161). Conclusions: The results show that the dominant source of the pressure loss is from the breathing circuit compared to the respiratory tract in patients without respiratory disease during inspiration.