Daniel Magalhães da Cruz, F. Clain, C. E. M. Guilherme
{"title":"高分子多长丝断裂载荷试验扭转效应的实验研究","authors":"Daniel Magalhães da Cruz, F. Clain, C. E. M. Guilherme","doi":"10.14311/ap.2022.62.0538","DOIUrl":null,"url":null,"abstract":"Polymeric multifilaments have gained a significant interest in recent decades. In the studies of mechanical characteristics, although there are different types of tests, such as rupture, abrasion, creep, impact and fatigue, it can be said that the main mechanical characterisation is the tensile rupture strength (Yarn Break Load, YBL), which also serves as a parameter for other tests. The objective of this work is to evaluate the results of breaking strength under different torsional conditions in polymeric multifilaments and to determine optimal twists for failures. The test were carried out with the following materials: polyamide, polyester, and high modulus polyethylene (HMPE), and for torsional conditions: 0, 20, 40, 60, 120, 240, and 480 turns per metre. As a result, for these torsion groups, curves were obtained for the three materials that present an optimal point of maximum rupture value, which was also experimentally proven. The twist that optimises the breaking strength of HMPE is 38 turns per metre, 56 turns per metre for polyester, and 95 turns per metre for polyamide. The twist groups that exceed the optimal torsion have a deleterious effect on the material, where the multifilament ceases to be homogeneous and starts to create an excessive \"spring effect\". The results found differ from the recommendation of the standard that regulates the YBL test, and thus, a relationship is built between groups of optimal torsion and linear density that provides evidence that the increase in linear density causes the optimal torsion for rupture to also increase, while the standard places a condition of 30 turns per metre for linear densities greater than 2200 dtex, and 60 turns per metre for linear densities less than 2200 dtex. In addition to optimal torsion values, this conclusion is paramount, the test procedure makes a general recommendation that does not optimise the breaking strength.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental study of the torsional effect for yarn break load test of polymeric multifilaments\",\"authors\":\"Daniel Magalhães da Cruz, F. Clain, C. E. M. Guilherme\",\"doi\":\"10.14311/ap.2022.62.0538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric multifilaments have gained a significant interest in recent decades. In the studies of mechanical characteristics, although there are different types of tests, such as rupture, abrasion, creep, impact and fatigue, it can be said that the main mechanical characterisation is the tensile rupture strength (Yarn Break Load, YBL), which also serves as a parameter for other tests. The objective of this work is to evaluate the results of breaking strength under different torsional conditions in polymeric multifilaments and to determine optimal twists for failures. The test were carried out with the following materials: polyamide, polyester, and high modulus polyethylene (HMPE), and for torsional conditions: 0, 20, 40, 60, 120, 240, and 480 turns per metre. As a result, for these torsion groups, curves were obtained for the three materials that present an optimal point of maximum rupture value, which was also experimentally proven. The twist that optimises the breaking strength of HMPE is 38 turns per metre, 56 turns per metre for polyester, and 95 turns per metre for polyamide. The twist groups that exceed the optimal torsion have a deleterious effect on the material, where the multifilament ceases to be homogeneous and starts to create an excessive \\\"spring effect\\\". The results found differ from the recommendation of the standard that regulates the YBL test, and thus, a relationship is built between groups of optimal torsion and linear density that provides evidence that the increase in linear density causes the optimal torsion for rupture to also increase, while the standard places a condition of 30 turns per metre for linear densities greater than 2200 dtex, and 60 turns per metre for linear densities less than 2200 dtex. In addition to optimal torsion values, this conclusion is paramount, the test procedure makes a general recommendation that does not optimise the breaking strength.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2022.62.0538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental study of the torsional effect for yarn break load test of polymeric multifilaments
Polymeric multifilaments have gained a significant interest in recent decades. In the studies of mechanical characteristics, although there are different types of tests, such as rupture, abrasion, creep, impact and fatigue, it can be said that the main mechanical characterisation is the tensile rupture strength (Yarn Break Load, YBL), which also serves as a parameter for other tests. The objective of this work is to evaluate the results of breaking strength under different torsional conditions in polymeric multifilaments and to determine optimal twists for failures. The test were carried out with the following materials: polyamide, polyester, and high modulus polyethylene (HMPE), and for torsional conditions: 0, 20, 40, 60, 120, 240, and 480 turns per metre. As a result, for these torsion groups, curves were obtained for the three materials that present an optimal point of maximum rupture value, which was also experimentally proven. The twist that optimises the breaking strength of HMPE is 38 turns per metre, 56 turns per metre for polyester, and 95 turns per metre for polyamide. The twist groups that exceed the optimal torsion have a deleterious effect on the material, where the multifilament ceases to be homogeneous and starts to create an excessive "spring effect". The results found differ from the recommendation of the standard that regulates the YBL test, and thus, a relationship is built between groups of optimal torsion and linear density that provides evidence that the increase in linear density causes the optimal torsion for rupture to also increase, while the standard places a condition of 30 turns per metre for linear densities greater than 2200 dtex, and 60 turns per metre for linear densities less than 2200 dtex. In addition to optimal torsion values, this conclusion is paramount, the test procedure makes a general recommendation that does not optimise the breaking strength.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.