二维稳定全欧拉方程表征的全局声速-声速贴片

IF 1.5 3区 数学 Q1 MATHEMATICS
Yan-bo Hu, Jiequan Li
{"title":"二维稳定全欧拉方程表征的全局声速-声速贴片","authors":"Yan-bo Hu, Jiequan Li","doi":"10.57262/ade/1589594418","DOIUrl":null,"url":null,"abstract":"Supersonic-sonic patches are ubiquitous in regions of transonic flows and they boil down to a family of degenerate hyperbolic problems in regions surrounded by a streamline, a characteristic curve and a possible sonic curve. This paper establishes the global existence of solutions in a whole supersonic-sonic patch characterized by the two-dimensional full system of steady Euler equations and studies solution behaviors near sonic curves, depending on the proper choice of boundary data extracted from the airfoil problem and related contexts. New characteristic decompositions are developed for the full system and a delicate local partial hodograph transformation is introduced for the solution estimates. It is shown that the solution is uniformly $C^{1,\\frac{1}{6}}$ continuous up to the sonic curve and the sonic curve is also $C^{1,\\frac{1}{6}}$ continuous.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On a global supersonic-sonic patch characterized by 2-D steady full Euler equations\",\"authors\":\"Yan-bo Hu, Jiequan Li\",\"doi\":\"10.57262/ade/1589594418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supersonic-sonic patches are ubiquitous in regions of transonic flows and they boil down to a family of degenerate hyperbolic problems in regions surrounded by a streamline, a characteristic curve and a possible sonic curve. This paper establishes the global existence of solutions in a whole supersonic-sonic patch characterized by the two-dimensional full system of steady Euler equations and studies solution behaviors near sonic curves, depending on the proper choice of boundary data extracted from the airfoil problem and related contexts. New characteristic decompositions are developed for the full system and a delicate local partial hodograph transformation is introduced for the solution estimates. It is shown that the solution is uniformly $C^{1,\\\\frac{1}{6}}$ continuous up to the sonic curve and the sonic curve is also $C^{1,\\\\frac{1}{6}}$ continuous.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade/1589594418\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1589594418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

超声速斑块在跨声速流动区域中是普遍存在的,它们可以归结为由流线、特征曲线和可能的声波曲线所包围的区域中的一类退化双曲问题。本文建立了以二维稳定欧拉方程全系统为特征的整个超音速声速斑块解的整体存在性,并研究了翼型问题边界数据的合理选择和相关环境下声速曲线附近的解行为。提出了一种新的全系统特征分解方法,并引入了一种精细的局部偏半谱变换来进行解估计。结果表明,解在声波曲线上一致为$C^{1,\frac{1}{6}}$连续,声波曲线也是$C^{1,\frac{1}{6}}$连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a global supersonic-sonic patch characterized by 2-D steady full Euler equations
Supersonic-sonic patches are ubiquitous in regions of transonic flows and they boil down to a family of degenerate hyperbolic problems in regions surrounded by a streamline, a characteristic curve and a possible sonic curve. This paper establishes the global existence of solutions in a whole supersonic-sonic patch characterized by the two-dimensional full system of steady Euler equations and studies solution behaviors near sonic curves, depending on the proper choice of boundary data extracted from the airfoil problem and related contexts. New characteristic decompositions are developed for the full system and a delicate local partial hodograph transformation is introduced for the solution estimates. It is shown that the solution is uniformly $C^{1,\frac{1}{6}}$ continuous up to the sonic curve and the sonic curve is also $C^{1,\frac{1}{6}}$ continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信