N. Abdel-Zaher, Manal T. H. Moselhey, O. W. Guirguis
{"title":"紫外臭氧辐照下HPMC薄膜的结构和热性能","authors":"N. Abdel-Zaher, Manal T. H. Moselhey, O. W. Guirguis","doi":"10.12989/AMR.2017.6.1.001","DOIUrl":null,"url":null,"abstract":"The aim of the work was to evaluate the effect of ultraviolet-ozone (UV-O3) irradiation with different times on the structure and thermal properties of hydroxypropyl methylcellulose (HPMC) in the form of a thin film to be used as bioequivalent materials according to their important broad practical and medical applications. HPMC thin films were exposed to UV-O3 radiation in air at a wavelength of 184.9 nm.The beneficial effects of this treatment on the crystallinity and amorphousity regions were followed by X-ray diffraction technique and FTIR spectroscopy. Differential scanning calorimetry, thermogravimetric and differntial thermal analyses were used in order to study the thermal properties of HPMC samples following the process of photodegradation. The obtained results indicated that the rate of degradation process was increased with increasing the exposure time. Variations in shape and area of the thermal peaks were observed which may be attributed to the different degrees of crystallinity after exposing the treated HPMC samples. This meant a change in the amorphousity of the treated samples, the oxidation of its chemical linkages on its surface and its bulk, and the formation of free radical species as well as bond formation.","PeriodicalId":46242,"journal":{"name":"Advances in Materials Research-An International Journal","volume":"6 1","pages":"1-12"},"PeriodicalIF":1.9000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultraviolet-ozone irradiation of HPMC thin films: Structural and thermal properties\",\"authors\":\"N. Abdel-Zaher, Manal T. H. Moselhey, O. W. Guirguis\",\"doi\":\"10.12989/AMR.2017.6.1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the work was to evaluate the effect of ultraviolet-ozone (UV-O3) irradiation with different times on the structure and thermal properties of hydroxypropyl methylcellulose (HPMC) in the form of a thin film to be used as bioequivalent materials according to their important broad practical and medical applications. HPMC thin films were exposed to UV-O3 radiation in air at a wavelength of 184.9 nm.The beneficial effects of this treatment on the crystallinity and amorphousity regions were followed by X-ray diffraction technique and FTIR spectroscopy. Differential scanning calorimetry, thermogravimetric and differntial thermal analyses were used in order to study the thermal properties of HPMC samples following the process of photodegradation. The obtained results indicated that the rate of degradation process was increased with increasing the exposure time. Variations in shape and area of the thermal peaks were observed which may be attributed to the different degrees of crystallinity after exposing the treated HPMC samples. This meant a change in the amorphousity of the treated samples, the oxidation of its chemical linkages on its surface and its bulk, and the formation of free radical species as well as bond formation.\",\"PeriodicalId\":46242,\"journal\":{\"name\":\"Advances in Materials Research-An International Journal\",\"volume\":\"6 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Research-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/AMR.2017.6.1.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Research-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AMR.2017.6.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultraviolet-ozone irradiation of HPMC thin films: Structural and thermal properties
The aim of the work was to evaluate the effect of ultraviolet-ozone (UV-O3) irradiation with different times on the structure and thermal properties of hydroxypropyl methylcellulose (HPMC) in the form of a thin film to be used as bioequivalent materials according to their important broad practical and medical applications. HPMC thin films were exposed to UV-O3 radiation in air at a wavelength of 184.9 nm.The beneficial effects of this treatment on the crystallinity and amorphousity regions were followed by X-ray diffraction technique and FTIR spectroscopy. Differential scanning calorimetry, thermogravimetric and differntial thermal analyses were used in order to study the thermal properties of HPMC samples following the process of photodegradation. The obtained results indicated that the rate of degradation process was increased with increasing the exposure time. Variations in shape and area of the thermal peaks were observed which may be attributed to the different degrees of crystallinity after exposing the treated HPMC samples. This meant a change in the amorphousity of the treated samples, the oxidation of its chemical linkages on its surface and its bulk, and the formation of free radical species as well as bond formation.