{"title":"用几何精确梁公式分析变速转子的性能优势和共振","authors":"Ruthvik Chandrasekaran, D. Hodges","doi":"10.4050/jahs.67.042006","DOIUrl":null,"url":null,"abstract":"\n The efficiency and operating envelope of rotorcraft are constrained by the speed of the rotor. Most helicopters operate with a constant rotor speed. Varying the speed of the rotor based on the operating condition could significantly improve the rotor's performance. In this study, a hingeless rotor model with elastic blades is built-in DYMORE to study various aspects of variable speed rotor technology. The rotor blades are modeled as one-dimensional beams using state-of-the-art beam theory known as the geometrically exact beam theory. An unsteady aerodynamics model with dynamic stall and finite-state dynamic inflow is used to obtain the aerodynamic loads acting on the rotor. The power savings that can be achieved at various advance ratios by varying the speed of the rotor is evaluated. Maximum power savings of 41% was achieved at a nominal advance ratio of 0.2. However, changing the rotor speed leads to vibration issues when a rotor blade passes through a resonance point. A methodology to identify the important resonance points for a given flight condition and rotor speed transition is also provided. The forces acting on the rotor blade during resonance crossings at different advance ratios are evaluated. It is found that the amplitude increase during resonance crossing is strongly dependent on the amplitude of the cyclic pitch angles during resonance.\n","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Advantages and Resonance Analysis of a Variable Speed Rotor Using Geometrically Exact Beam Formulations\",\"authors\":\"Ruthvik Chandrasekaran, D. Hodges\",\"doi\":\"10.4050/jahs.67.042006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The efficiency and operating envelope of rotorcraft are constrained by the speed of the rotor. Most helicopters operate with a constant rotor speed. Varying the speed of the rotor based on the operating condition could significantly improve the rotor's performance. In this study, a hingeless rotor model with elastic blades is built-in DYMORE to study various aspects of variable speed rotor technology. The rotor blades are modeled as one-dimensional beams using state-of-the-art beam theory known as the geometrically exact beam theory. An unsteady aerodynamics model with dynamic stall and finite-state dynamic inflow is used to obtain the aerodynamic loads acting on the rotor. The power savings that can be achieved at various advance ratios by varying the speed of the rotor is evaluated. Maximum power savings of 41% was achieved at a nominal advance ratio of 0.2. However, changing the rotor speed leads to vibration issues when a rotor blade passes through a resonance point. A methodology to identify the important resonance points for a given flight condition and rotor speed transition is also provided. The forces acting on the rotor blade during resonance crossings at different advance ratios are evaluated. It is found that the amplitude increase during resonance crossing is strongly dependent on the amplitude of the cyclic pitch angles during resonance.\\n\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.042006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Performance Advantages and Resonance Analysis of a Variable Speed Rotor Using Geometrically Exact Beam Formulations
The efficiency and operating envelope of rotorcraft are constrained by the speed of the rotor. Most helicopters operate with a constant rotor speed. Varying the speed of the rotor based on the operating condition could significantly improve the rotor's performance. In this study, a hingeless rotor model with elastic blades is built-in DYMORE to study various aspects of variable speed rotor technology. The rotor blades are modeled as one-dimensional beams using state-of-the-art beam theory known as the geometrically exact beam theory. An unsteady aerodynamics model with dynamic stall and finite-state dynamic inflow is used to obtain the aerodynamic loads acting on the rotor. The power savings that can be achieved at various advance ratios by varying the speed of the rotor is evaluated. Maximum power savings of 41% was achieved at a nominal advance ratio of 0.2. However, changing the rotor speed leads to vibration issues when a rotor blade passes through a resonance point. A methodology to identify the important resonance points for a given flight condition and rotor speed transition is also provided. The forces acting on the rotor blade during resonance crossings at different advance ratios are evaluated. It is found that the amplitude increase during resonance crossing is strongly dependent on the amplitude of the cyclic pitch angles during resonance.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine