{"title":"基于多任务加载的实时混合仿真方法","authors":"Tao Wang, Jiedun Hao, Guoshan Xu, Zhen Wang, Liyan Meng, Huan Zheng","doi":"10.1002/tal.2045","DOIUrl":null,"url":null,"abstract":"Due to the real‐time loading property and the limitation of available loading facilities, both of the refined numerical substructure simulations and multiple experimental substructure tests are impossible for traditional real‐time hybrid simulation method (RHSM). For improving the experimental accuracy under limited loading facilities, a RHSM based on multitasking loading (RHSM‐ML) is proposed in this paper. In the proposed method, an inner‐loop multitasking loading strategy is adopted for accurately reproducing the performance of multiple experimental substructures with limited available loading facilities, and an outer‐loop force correction‐based iteration strategy is adopted for further improving the experimental accuracy by allowing refined simulation of the numerical substructures while remaining real‐time loading on the experimental substructures. Firstly, the methodology of the proposed RHSM‐ML is presented. Furthermore, the numerical simulations were conducted for validating the effectiveness and accuracy of the proposed method. Finally, the influence of the structural model on the iterative convergence is analyzed. It is shown that the multitasking loading and the force correction‐based iteration strategy are feasible for RHSM. It is shown from numerical simulations that with the contribution of the multitasking loading strategy, the correlation coefficients under different simulation conditions can up to 0.9999 within five round iterations by the RHSM‐ML and the force correction‐based iteration strategy of the RHSM‐ML can significantly improve the iterative convergence accuracy. It is shown from iterative convergence analysis that under different structural models, the convergence of the RHSM‐ML can be achieved within five round iterations.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real‐time hybrid simulation method based on multitasking loading\",\"authors\":\"Tao Wang, Jiedun Hao, Guoshan Xu, Zhen Wang, Liyan Meng, Huan Zheng\",\"doi\":\"10.1002/tal.2045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the real‐time loading property and the limitation of available loading facilities, both of the refined numerical substructure simulations and multiple experimental substructure tests are impossible for traditional real‐time hybrid simulation method (RHSM). For improving the experimental accuracy under limited loading facilities, a RHSM based on multitasking loading (RHSM‐ML) is proposed in this paper. In the proposed method, an inner‐loop multitasking loading strategy is adopted for accurately reproducing the performance of multiple experimental substructures with limited available loading facilities, and an outer‐loop force correction‐based iteration strategy is adopted for further improving the experimental accuracy by allowing refined simulation of the numerical substructures while remaining real‐time loading on the experimental substructures. Firstly, the methodology of the proposed RHSM‐ML is presented. Furthermore, the numerical simulations were conducted for validating the effectiveness and accuracy of the proposed method. Finally, the influence of the structural model on the iterative convergence is analyzed. It is shown that the multitasking loading and the force correction‐based iteration strategy are feasible for RHSM. It is shown from numerical simulations that with the contribution of the multitasking loading strategy, the correlation coefficients under different simulation conditions can up to 0.9999 within five round iterations by the RHSM‐ML and the force correction‐based iteration strategy of the RHSM‐ML can significantly improve the iterative convergence accuracy. It is shown from iterative convergence analysis that under different structural models, the convergence of the RHSM‐ML can be achieved within five round iterations.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2045\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A real‐time hybrid simulation method based on multitasking loading
Due to the real‐time loading property and the limitation of available loading facilities, both of the refined numerical substructure simulations and multiple experimental substructure tests are impossible for traditional real‐time hybrid simulation method (RHSM). For improving the experimental accuracy under limited loading facilities, a RHSM based on multitasking loading (RHSM‐ML) is proposed in this paper. In the proposed method, an inner‐loop multitasking loading strategy is adopted for accurately reproducing the performance of multiple experimental substructures with limited available loading facilities, and an outer‐loop force correction‐based iteration strategy is adopted for further improving the experimental accuracy by allowing refined simulation of the numerical substructures while remaining real‐time loading on the experimental substructures. Firstly, the methodology of the proposed RHSM‐ML is presented. Furthermore, the numerical simulations were conducted for validating the effectiveness and accuracy of the proposed method. Finally, the influence of the structural model on the iterative convergence is analyzed. It is shown that the multitasking loading and the force correction‐based iteration strategy are feasible for RHSM. It is shown from numerical simulations that with the contribution of the multitasking loading strategy, the correlation coefficients under different simulation conditions can up to 0.9999 within five round iterations by the RHSM‐ML and the force correction‐based iteration strategy of the RHSM‐ML can significantly improve the iterative convergence accuracy. It is shown from iterative convergence analysis that under different structural models, the convergence of the RHSM‐ML can be achieved within five round iterations.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.