有理拉格朗日浸入的束量化与交

IF 0.8 4区 数学 Q2 MATHEMATICS
Tomohiro Asano, Yuichi Ike
{"title":"有理拉格朗日浸入的束量化与交","authors":"Tomohiro Asano, Yuichi Ike","doi":"10.5802/aif.3554","DOIUrl":null,"url":null,"abstract":"We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Sheaf quantization and intersection of rational Lagrangian immersions\",\"authors\":\"Tomohiro Asano, Yuichi Ike\",\"doi\":\"10.5802/aif.3554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3554\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3554","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

基于微局部槽轮理论,我们研究了余切丛中的有理拉格朗日浸入。我们构造了有理拉格朗日浸入的sheaf量子化,并研究了它在Tamarkin范畴中的性质。利用sheaf量子化,我们用纯sheaf理论的方法给出了位移能量的显式界,并给出了浸入及其Hamiltonian像的交点数量的Betti/cup长度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sheaf quantization and intersection of rational Lagrangian immersions
We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信